MARC보기
LDR00000nmm u2200205 4500
001000000331078
00520241108111421
008181129s2018 ||| | | | eng d
020 ▼a 9780438210714
035 ▼a (MiAaPQ)AAI10837451
035 ▼a (MiAaPQ)cmu:10270
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 620.11
1001 ▼a Mangal, Ankita.
24510 ▼a Applied Machine Learning to Predict Stress Hotspots in Materials.
260 ▼a [S.l.] : ▼b Carnegie Mellon University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 148 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Adviser: Elizabeth A. Holm.
5021 ▼a Thesis (Ph.D.)--Carnegie Mellon University, 2018.
520 ▼a This work focuses on integrating crystal plasticity based deformation models and machine learning techniques to gain data driven insights about the microstructural properties of polycrystalline metals. An inhomogeneous stress distribution in ma
590 ▼a School code: 0041.
650 4 ▼a Materials science.
690 ▼a 0794
71020 ▼a Carnegie Mellon University. ▼b Materials Science and Engineering.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0041
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14999558 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자