MARC보기
LDR01541nmm uu200397 4500
001000000330939
00520240805163117
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438134935
035 ▼a (MiAaPQ)AAI10903668
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 621
1001 ▼a Hauser, Michael.
24510 ▼a Principles of Riemannian Geometry in Neural Networks.
260 ▼a [S.l.] : ▼b The Pennsylvania State University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 156 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
5021 ▼a Thesis (Ph.D.)--The Pennsylvania State University, 2018.
520 ▼a The first part of this dissertation deals with neural networks in the sense of geometric transformations acting on the coordinate representation of the underlying data manifold from which the data is sampled. It forms part of an attempt to const
590 ▼a School code: 0176.
650 4 ▼a Mechanical engineering.
650 4 ▼a Computer science.
650 4 ▼a Theoretical physics.
690 ▼a 0548
690 ▼a 0984
690 ▼a 0753
71020 ▼a The Pennsylvania State University. ▼b Mechanical and Nuclear Engineering.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0176
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000661 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자