MARC보기
LDR01719nmm uu200385 4500
001000000330869
00520240805162957
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438126626
035 ▼a (MiAaPQ)AAI10903056
035 ▼a (MiAaPQ)umichrackham:001260
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 310
1001 ▼a Guidici, Teal.
24510 ▼a Methods for Utilizing Co-expression Networks for Biological Insight.
260 ▼a [S.l.] : ▼b University of Michigan., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 156 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Advisers: Charles Burant
5021 ▼a Thesis (Ph.D.)--University of Michigan, 2018.
520 ▼a The explosion of high-throughput Omics assays in past 15 years has led to a revolution in the quantity of data and the number of data types which are available to biological researchers. This has necessitated a second revolution in the developme
520 ▼a The primary goal of this dissertation is to develop techniques for identifying and characterizing patterns of co-expression. In our first project, we develop a Differentially Weighted Factor Model for estimating covariance matrices related throu
590 ▼a School code: 0127.
650 4 ▼a Statistics.
690 ▼a 0463
71020 ▼a University of Michigan. ▼b Statistics.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0127
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000554 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자