MARC보기
LDR00000nmm u2200205 4500
001000000330866
00520241105134455
008181129s2018 ||| | | | eng d
020 ▼a 9780438126589
035 ▼a (MiAaPQ)AAI10903052
035 ▼a (MiAaPQ)umichrackham:001209
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 574
1001 ▼a Imbriano, Paul M.
24510 ▼a Methods for Improving Efficiency of Planned Missing Data Designs.
260 ▼a [S.l.] : ▼b University of Michigan., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 111 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Adviser: Trivellore E. Raghunathan.
5021 ▼a Thesis (Ph.D.)--University of Michigan, 2018.
520 ▼a Any survey specifically constructed so that at least some variables are unobserved on a subset of participants is a planned missing data design, where missing data represent an intentional feature of the study. Use of planned missing data design
520 ▼a First, we propose new methods for selecting our second phase sample in two-phase surveys to reduce the variance of our estimate. When our outcome variable is continuous, we can use the data collected in Phase I for selecting our Phase II sample
520 ▼a Next, we examine the performance of several design allocations for implementing a split questionnaire survey in a longitudinal study. While many papers examined the administration of split questionnaire designs in cross-sectional studies, resear
520 ▼a Finally, we propose a method for improving variable allocation in split questionnaire designs. We establish a criterion that allows us to determine which variable allocations minimize the loss of information due to missing data. We use the Kullb
590 ▼a School code: 0127.
650 4 ▼a Biostatistics.
690 ▼a 0308
71020 ▼a University of Michigan. ▼b Biostatistics.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0127
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000550 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자