MARC보기
LDR00000nmm u2200205 4500
001000000330679
00520241104142839
008181129s2017 ||| | | | eng d
020 ▼a 9780438098428
035 ▼a (MiAaPQ)AAI10901903
035 ▼a (MiAaPQ)OhioLINK:osu1503072235693181
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 310
1001 ▼a Jiang, Jieyi.
24510 ▼a Realistic Predictive Risk: The Role of Penalty and Covariate Diffusion in Model Selection.
260 ▼a [S.l.] : ▼b The Ohio State University., ▼c 2017
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2017
300 ▼a 176 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Advisers: Steven MacEachern
5021 ▼a Thesis (Ph.D.)--The Ohio State University, 2017.
520 ▼a One important goal of model selection is the minimization of predictive risk. First, fold-wise cross-validation aims at estimating the predictive risk and identifying the structure of the linear model. However, it leads to inconsistent model sel
520 ▼a The second part of this dissertation discusses the change in predictive risk due to diffused covariates. Typical derivations for model selection criteria assume that the distributions of covariates in the training set and future-prediction set a
590 ▼a School code: 0168.
650 4 ▼a Statistics.
690 ▼a 0463
71020 ▼a The Ohio State University. ▼b Statistics.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0168
791 ▼a Ph.D.
792 ▼a 2017
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000314 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자