MARC보기
LDR00000nmm u2200205 4500
001000000330642
00520241104112804
008181129s2017 ||| | | | eng d
020 ▼a 9780438097353
035 ▼a (MiAaPQ)AAI10891772
035 ▼a (MiAaPQ)OhioLINK:osu1503180139155502
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 310
1001 ▼a Yan, Zhifei.
24510 ▼a Semidefinite Programming Approaches to Network Clustering and Smoothing.
260 ▼a [S.l.] : ▼b The Ohio State University., ▼c 2017
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2017
300 ▼a 111 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Adviser: Vincent Vu.
5021 ▼a Thesis (Ph.D.)--The Ohio State University, 2017.
520 ▼a Community detection and link prediction are two important problems in network analysis. In this dissertation, we propose semidefinite programming approaches to network community detection and edge probabilities estimation. Interestingly, despite
520 ▼a For community detection, the SDP is derived from the partition criterion of maximizing the sum of average intra-cluster similarities over all clusters. The feasible set of our SDP is contained in the Fantope, which enables us to connect our SDP
590 ▼a School code: 0168.
650 4 ▼a Statistics.
690 ▼a 0463
71020 ▼a The Ohio State University. ▼b Statistics.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0168
791 ▼a Ph.D.
792 ▼a 2017
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000269 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자