MARC보기
LDR00000nmm u2200205 4500
001000000330633
00520241104110833
008181129s2017 ||| | | | eng d
020 ▼a 9780438096394
035 ▼a (MiAaPQ)AAI10891672
035 ▼a (MiAaPQ)OhioLINK:osu1503183775028923
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 510
1001 ▼a Borland, Alexander.
24513 ▼a An Invariant of Links on Surfaces via Hopf Algebra Bundles.
260 ▼a [S.l.] : ▼b The Ohio State University., ▼c 2017
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2017
300 ▼a 209 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B.
500 ▼a Adviser: Thomas Kerler.
5021 ▼a Thesis (Ph.D.)--The Ohio State University, 2017.
520 ▼a One semi-classical knot invariant involves turning a knot diagram into a curve in R2 which is "decorated" by elements of a ribbon Hopf algebra H. A decorated curve is turned into an element of H using a form of pictoral calculus. The image of th
520 ▼a In this process, we develop a theory of decorated curves in an arbitrary smooth manifold M using a balanced, flat ribbon Hopf algebra bundle E &rarr
520 ▼a We also define local diagrams to picture the decorated curves. The original pictoral calculus for decorated curves in R2 is recaptured by viewing decorated curves in T1Sigma through these local diagrams.
590 ▼a School code: 0168.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a The Ohio State University. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-11B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0168
791 ▼a Ph.D.
792 ▼a 2017
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000237 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자