MARC보기
LDR00000nmm u2200205 4500
001000000330519
00520241101095808
008181129s2018 ||| | | | eng d
020 ▼a 9780438354128
035 ▼a (MiAaPQ)AAI10846106
035 ▼a (MiAaPQ)umn:19537
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 310
1001 ▼a O'Connell, Michael J.
24510 ▼a Integrative Analyses for Multi-Source Data with Multiple Shared Dimensions.
260 ▼a [S.l.] : ▼b University of Minnesota., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 96 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
500 ▼a Adviser: Eric F. Lock.
5021 ▼a Thesis (Ph.D.)--University of Minnesota, 2018.
520 ▼a High dimensional data consists of matrices with a large number of features and is common across many fields of study, including genetics, imaging, and toxicology. This type of data is challenging to analyze because of its size, and many traditio
590 ▼a School code: 0130.
650 4 ▼a Statistics.
650 4 ▼a Public health.
650 4 ▼a Genetics.
690 ▼a 0463
690 ▼a 0573
690 ▼a 0369
71020 ▼a University of Minnesota. ▼b Biostatistics.
7730 ▼t Dissertation Abstracts International ▼g 80-01B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0130
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000111 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자