MARC보기
LDR00000nmm u2200205 4500
001000000330469
00520241031185111
008181129s2018 ||| | | | eng d
020 ▼a 9780438371569
035 ▼a (MiAaPQ)AAI10845443
035 ▼a (MiAaPQ)uchicago:14524
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 310
1001 ▼a Ha, Wooseok. ▼0 (orcid)0000-0002-9069-854X
24510 ▼a High-Dimensional Estimation and Optimization With Multiple Structured Signals.
260 ▼a [S.l.] : ▼b The University of Chicago., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 175 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-02(E), Section: B.
500 ▼a Adviser: Rina Foygel Barber.
5021 ▼a Thesis (Ph.D.)--The University of Chicago, 2018.
520 ▼a Statistical recovery in high-dimensional statistics and signal processing often requests a determination of multiple structured signals from massive data. And depending on its application, either one or both of the signals may be of primarily i
520 ▼a Chapter 2 describes a low-rank + sparse decomposition problem under data compression and we study rigorous statistical performance guarantee that is achievable using a joint convex optimization based estimator. It is well known that the convex r
590 ▼a School code: 0330.
650 4 ▼a Statistics.
650 4 ▼a Medical imaging.
650 4 ▼a Computer science.
690 ▼a 0463
690 ▼a 0574
690 ▼a 0984
71020 ▼a The University of Chicago. ▼b Statistics.
7730 ▼t Dissertation Abstracts International ▼g 80-02B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0330
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000061 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자