MARC보기
LDR00000nmm u2200205 4500
001000000330465
00520241031184938
008181129s2018 ||| | | | eng d
020 ▼a 9780438325692
035 ▼a (MiAaPQ)AAI10845378
035 ▼a (MiAaPQ)berkeley:18106
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 510
1001 ▼a Liang, Ruochen.
24510 ▼a Fast and Stable Low-rank Symmetric Eigen-update.
260 ▼a [S.l.] : ▼b University of California, Berkeley., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 68 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
500 ▼a Adviser: Ming Gu.
5021 ▼a Thesis (Ph.D.)--University of California, Berkeley, 2018.
520 ▼a Updating the eigensystem of modified symmetric matrices is an important task arising from certain fields of applications. The core of the problem is computing the eigenvalues and orthogonal eigenvectors of a diagonal matrix with symmetric low ra
520 ▼a The main contribution of this thesis is a new method to compute all the eigenvalues and eigenvectors of a real diagonal matrix with a symmetric low rank perturbation. The algorithm computes an orthogonal matrix Q = [q1, q2,..., qn] and a diagona
520 ▼a Aside from solving the eigensystem update problem mentioned above, our proposed method can also be used in the divide and conquer eigenvalue algorithm. Cuppen's divide and conquer algorithm [16] solves a rank-one update of eigensystem in its mer
520 ▼a In our proposed algorithm, eigenpairs are mostly computed by Rayleigh Quotient Iteration safe-guarded with bisection, with each eigenpair requiring O(nr2) flops to compute. Hence the overall computational complexity for our algorithm is O( n2r2
590 ▼a School code: 0028.
650 4 ▼a Mathematics.
650 4 ▼a Applied mathematics.
690 ▼a 0405
690 ▼a 0364
71020 ▼a University of California, Berkeley. ▼b Applied Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 80-01B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0028
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000057 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자