LDR | | 00000nmm u2200205 4500 |
001 | | 000000330299 |
005 | | 20241029095345 |
008 | | 181129s2018 ||| | | | eng d |
020 | |
▼a 9780438325609 |
035 | |
▼a (MiAaPQ)AAI10843062 |
035 | |
▼a (MiAaPQ)berkeley:18085 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
049 | 1 |
▼f DP |
082 | 0 |
▼a 004 |
100 | 1 |
▼a Tulsiani, Shubham. |
245 | 10 |
▼a Learning Single-view 3D Reconstruction of Objects and Scenes. |
260 | |
▼a [S.l.] :
▼b University of California, Berkeley.,
▼c 2018 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
300 | |
▼a 123 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B. |
500 | |
▼a Adviser: Jitendra Malik. |
502 | 1 |
▼a Thesis (Ph.D.)--University of California, Berkeley, 2018. |
520 | |
▼a We address the task of inferring the 3D structure underlying an image, in particular focusing on two questions -- how we can plausibly obtain supervisory signal for this task, and what forms of representation should we pursue. We first show that |
590 | |
▼a School code: 0028. |
650 | 4 |
▼a Computer science. |
690 | |
▼a 0984 |
710 | 20 |
▼a University of California, Berkeley.
▼b Computer Science. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 80-01B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0028 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14999891
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자
▼b 관리자 |