LDR | | 00000nmm u2200205 4500 |
001 | | 000000330155 |
005 | | 20241024164202 |
008 | | 181129s2018 ||| | | | eng d |
020 | |
▼a 9780438017016 |
035 | |
▼a (MiAaPQ)AAI10748410 |
035 | |
▼a (MiAaPQ)purdue:22363 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
049 | 1 |
▼f DP |
082 | 0 |
▼a 621 |
100 | 1 |
▼a Williams, Kyle R. |
245 | 10 |
▼a Real-Time Stochastic Predictive Control for Hybrid Vehicle Energy Management. |
260 | |
▼a [S.l.] :
▼b Purdue University.,
▼c 2018 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
300 | |
▼a 144 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B. |
500 | |
▼a Adviser: Monika M. Ivantysynova. |
502 | 1 |
▼a Thesis (Ph.D.)--Purdue University, 2018. |
520 | |
▼a This work presents three computational methods for real time energy management in a hybrid hydraulic vehicle (HHV) when driver behavior and vehicle route are not known in advance. These methods, implemented in a receding horizon control (aka mod |
590 | |
▼a School code: 0183. |
650 | 4 |
▼a Mechanical engineering. |
690 | |
▼a 0548 |
710 | 20 |
▼a Purdue University.
▼b Mechanical Engineering. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 79-10B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0183 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14996984
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자
▼b 관리자 |