MARC보기
LDR00000nmm u2200205 4500
001000000330117
00520241024090714
008181129s2017 ||| | | | eng d
020 ▼a 9780355555370
035 ▼a (MiAaPQ)AAI10742563
035 ▼a (MiAaPQ)wustl:12406
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 574
1001 ▼a Ainscough, Benjamin John. ▼0 (orcid)0000-0001-8340-514X
24510 ▼a Knowledge Driven Approaches and Machine Learning Improve the Identification of Clinically Relevant Somatic Mutations in Cancer Genomics.
260 ▼a [S.l.] : ▼b Washington University in St. Louis., ▼c 2017
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2017
300 ▼a 181 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-05(E), Section: B.
500 ▼a Advisers: Obi L. Griffith
5021 ▼a Thesis (Ph.D.)--Washington University in St. Louis, 2017.
506 ▼a This item is not available from ProQuest Dissertations & Theses.
520 ▼a For cancer genomics to fully expand its utility from research discovery to clinical adoption, somatic variant detection pipelines must be optimized and standardized to ensure identification of clinically relevant mutations and to reduce laboriou
590 ▼a School code: 0252.
650 4 ▼a Bioinformatics.
650 4 ▼a Artificial intelligence.
650 4 ▼a Genetics.
690 ▼a 0715
690 ▼a 0800
690 ▼a 0369
71020 ▼a Washington University in St. Louis. ▼b Biology & Biomedical Sciences (Human & Statistical Genetics).
7730 ▼t Dissertation Abstracts International ▼g 79-05B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0252
791 ▼a Ph.D.
792 ▼a 2017
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14996796 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자