MARC보기
LDR00000nmm u2200205 4500
001000000330084
00520241023134429
008181129s2018 ||| | | | eng d
020 ▼a 9780438208834
035 ▼a (MiAaPQ)AAI10744636
035 ▼a (MiAaPQ)grad.sunysb:13626
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 519
1001 ▼a Kong, Chi.
24510 ▼a Information Geometry and Dimensionality Reduction.
260 ▼a [S.l.] : ▼b State University of New York at Stony Brook., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 125 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Adviser: Andrew P. Mullhaupt.
5021 ▼a Thesis (Ph.D.)--State University of New York at Stony Brook, 2018.
520 ▼a In the context of information geometry, the framework of differential geometry is applied to probability theory. It has a wide range of applications not limited to statistical inference, including image and signal processing, statistical learnin
520 ▼a To summarize our main contributions: 1) We generalize information distance to MIMO LTI systems. When cepstrum are used as coordinates of the manifold, the geometry becomes Euclidean with nice theoretical and computational properties. 2) We devel
590 ▼a School code: 0771.
650 4 ▼a Applied mathematics.
690 ▼a 0364
71020 ▼a State University of New York at Stony Brook. ▼b Applied Mathematics and Statistics.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0771
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14996835 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자