MARC보기
LDR00000nmm u2200205 4500
001000000330044
00520241023115522
008181129s2017 ||| | | | eng d
020 ▼a 9780438090231
035 ▼a (MiAaPQ)AAI10686354
035 ▼a (MiAaPQ)okstate:15556
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 338
1001 ▼a Banga, Jasdeep Singh.
24510 ▼a Machine Learning: A Potential Forecasting Tool.
260 ▼a [S.l.] : ▼b Oklahoma State University., ▼c 2017
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2017
300 ▼a 69 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: A.
500 ▼a Adviser: B. Wade Brorsen.
5021 ▼a Thesis (Ph.D.)--Oklahoma State University, 2017.
520 ▼a Technical analysis involves predicting asset price movements from analysis of historical prices. Many studies have been conducted to determine the profitability of technical analysis. A composite prediction is considered here by using the buy an
520 ▼a None of the individual indicators or machine learning models generate significant profit in single day forecasts. In twenty-day forecasts, only random forest and pipeline models are profitable. Neural networks and statistical models both failed
590 ▼a School code: 0664.
650 4 ▼a Agricultural economics.
650 4 ▼a Finance.
650 4 ▼a Economics.
690 ▼a 0503
690 ▼a 0508
690 ▼a 0501
71020 ▼a Oklahoma State University. ▼b Agricultural Economics.
7730 ▼t Dissertation Abstracts International ▼g 79-11A(E).
773 ▼t Dissertation Abstract International
790 ▼a 0664
791 ▼a Ph.D.
792 ▼a 2017
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14996750 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자