MARC보기
LDR00000nmm u2200205 4500
001000000329996
00520241017162132
008181129s2017 ||| | | | eng d
020 ▼a 9780355912227
035 ▼a (MiAaPQ)AAI10641764
035 ▼a (MiAaPQ)umd:18609
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 621.3
1001 ▼a Sivaraman, Ganesh. ▼0 (orcid)0000-0002-5705-4443
24510 ▼a Articulatory Representations to Address Acoustic Variability in Speech.
260 ▼a [S.l.] : ▼b University of Maryland, College Park., ▼c 2017
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2017
300 ▼a 160 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-09(E), Section: B.
500 ▼a Adviser: Carol Y. Espy-Wilson.
5021 ▼a Thesis (Ph.D.)--University of Maryland, College Park, 2017.
506 ▼a This item is not available from ProQuest Dissertations & Theses.
520 ▼a The past decade has seen phenomenal improvement in the performance of Automatic Speech Recognition (ASR) systems. In spite of this vast improvement in performance, the state-of-the-art still lags significantly behind human speech recognition. Ev
590 ▼a School code: 0117.
650 4 ▼a Electrical engineering.
650 4 ▼a Linguistics.
690 ▼a 0544
690 ▼a 0290
71020 ▼a University of Maryland, College Park. ▼b Electrical Engineering.
7730 ▼t Dissertation Abstracts International ▼g 79-09B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0117
791 ▼a Ph.D.
792 ▼a 2017
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14996705 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자