MARC보기
LDR00000nmm u2200205 4500
001000000329958
00520241017155830
008181129s2017 ||| | | | eng d
020 ▼a 9780438206175
035 ▼a (MiAaPQ)AAI10634861
035 ▼a (MiAaPQ)rpi:11167
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 660
1001 ▼a Howsmon, Daniel P.
24510 ▼a Data-Driven Modeling for Uncertain Biological Systems.
260 ▼a [S.l.] : ▼b Rensselaer Polytechnic Institute., ▼c 2017
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2017
300 ▼a 184 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Advisers: Juergen Hahn
5021 ▼a Thesis (Ph.D.)--Rensselaer Polytechnic Institute, 2017.
520 ▼a Data-driven models couple any systems, statistical, or optimization-based model to a particular application area and model objective. These models can operate in the midst of large amounts of model uncertainty since they do not require fundament
590 ▼a School code: 0185.
650 4 ▼a Chemical engineering.
650 4 ▼a Biomedical engineering.
690 ▼a 0542
690 ▼a 0541
71020 ▼a Rensselaer Polytechnic Institute. ▼b Chemical Engineering.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0185
791 ▼a Ph.D.
792 ▼a 2017
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14996666 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자