| LDR | | 00000nmm u2200205 4500 |
| 001 | | 000000329945 |
| 005 | | 20241017152631 |
| 008 | | 181129s2018 ||| | | | eng d |
| 020 | |
▼a 9780438083189 |
| 035 | |
▼a (MiAaPQ)AAI10748044 |
| 035 | |
▼a (MiAaPQ)uchicago:14219 |
| 040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
| 049 | 1 |
▼f DP |
| 082 | 0 |
▼a 510 |
| 100 | 1 |
▼a Chonoles, Zev.
▼0 (orcid)0000-0003-1307-7384 |
| 245 | 14 |
▼a The RO(G)-Graded Cohomology of the Equivariant Classifying Space BGSU2. |
| 260 | |
▼a [S.l.] :
▼b The University of Chicago.,
▼c 2018 |
| 260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
| 300 | |
▼a 105 p. |
| 500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B. |
| 500 | |
▼a Adviser: Peter May. |
| 502 | 1 |
▼a Thesis (Ph.D.)--The University of Chicago, 2018. |
| 520 | |
▼a We compute the additive structure of the RO(Cn)-graded Bredon equivariant cohomology of the equivariant classifying space BCnSU(2), for any n that is either prime or a product of distinct odd primes, and we also compute its multiplicative struc |
| 520 | |
▼a The key tools used are equivariant "even-dimensional freeness" and "multiplicative comparison" theorems for G-cell complexes, both proven by Lewis in [Lew88] and subsequently refined by Shulman in [Shu10], and with the former theorem extended by |
| 590 | |
▼a School code: 0330. |
| 650 | 4 |
▼a Mathematics. |
| 690 | |
▼a 0405 |
| 710 | 20 |
▼a The University of Chicago.
▼b Mathematics. |
| 773 | 0 |
▼t Dissertation Abstracts International
▼g 79-11B(E). |
| 773 | |
▼t Dissertation Abstract International |
| 790 | |
▼a 0330 |
| 791 | |
▼a Ph.D. |
| 792 | |
▼a 2018 |
| 793 | |
▼a English |
| 856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14996962
▼n KERIS |
| 980 | |
▼a 201812
▼f 2019 |
| 990 | |
▼a 관리자
▼b 관리자 |