LDR | | 00000nmm u2200205 4500 |
001 | | 000000329822 |
005 | | 20241016154642 |
008 | | 181129s2018 ||| | | | eng d |
020 | |
▼a 9780438322455 |
035 | |
▼a (MiAaPQ)AAI10823507 |
035 | |
▼a (MiAaPQ)ucsd:17466 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
049 | 1 |
▼f DP |
082 | 0 |
▼a 510 |
100 | 1 |
▼a Drimbe, Daniel. |
245 | 10 |
▼a Some Rigidity Results for Coinduced Actions and Structural Results for Group von Neumann Algebras. |
260 | |
▼a [S.l.] :
▼b University of California, San Diego.,
▼c 2018 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
300 | |
▼a 169 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B. |
500 | |
▼a Adviser: Adrian Ioana. |
502 | 1 |
▼a Thesis (Ph.D.)--University of California, San Diego, 2018. |
520 | |
▼a In Chapter II of this dissertation we prove a cocycle superrigidity theorem for a large class of coinduced actions. In particular, if Sigma is an infinite index subgroup of a countable group Gamma, we consider a probability measure preserving (p |
520 | |
▼a We then study in Chapter III structural results of group von Neumann algebras arising from certain lattices following the joint work [DHI16] with Daniel Hoff and Adrian Ioana. We describe all tensor product decompositions of L(Gamma) for icc cou |
520 | |
▼a Finally, we prove in Chapter IV W*-superrigidity for a large class of coinduced actions. We prove that if Sigma is an amenable almost-malnormal subgroup of an icc property (T) countable group Gamma, the coinduced action Gamma &rarr |
590 | |
▼a School code: 0033. |
650 | 4 |
▼a Mathematics. |
690 | |
▼a 0405 |
710 | 20 |
▼a University of California, San Diego.
▼b Mathematics. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 80-01B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0033 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998574
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자
▼b 관리자 |