MARC보기
LDR00000nmm u2200205 4500
001000000329763
00520241016151025
008181129s2018 ||| | | | eng d
020 ▼a 9780355958812
035 ▼a (MiAaPQ)AAI10822878
035 ▼a (MiAaPQ)cmu:10258
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 621.3
1001 ▼a Zhang, Shanghang.
24510 ▼a Deep Understanding of Urban Mobility from CityscapeWebcams.
260 ▼a [S.l.] : ▼b Carnegie Mellon University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 129 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-09(E), Section: B.
500 ▼a Advisers: Jose MF Moura
5021 ▼a Thesis (Ph.D.)--Carnegie Mellon University, 2018.
506 ▼a This item is not available from ProQuest Dissertations & Theses.
520 ▼a Deep understanding of urban mobility is of great significance for many real-world applications, such as urban traffic management and autonomous driving. This thesis develops deep learning methodologies to extract vehicle counts from streaming re
590 ▼a School code: 0041.
650 4 ▼a Computer engineering.
650 4 ▼a Artificial intelligence.
690 ▼a 0464
690 ▼a 0800
71020 ▼a Carnegie Mellon University. ▼b Electrical and Computer Engineering.
7730 ▼t Dissertation Abstracts International ▼g 79-09B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0041
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998516 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자