LDR | | 00000nmm u2200205 4500 |
001 | | 000000329763 |
005 | | 20241016151025 |
008 | | 181129s2018 ||| | | | eng d |
020 | |
▼a 9780355958812 |
035 | |
▼a (MiAaPQ)AAI10822878 |
035 | |
▼a (MiAaPQ)cmu:10258 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
049 | 1 |
▼f DP |
082 | 0 |
▼a 621.3 |
100 | 1 |
▼a Zhang, Shanghang. |
245 | 10 |
▼a Deep Understanding of Urban Mobility from CityscapeWebcams. |
260 | |
▼a [S.l.] :
▼b Carnegie Mellon University.,
▼c 2018 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
300 | |
▼a 129 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-09(E), Section: B. |
500 | |
▼a Advisers: Jose MF Moura |
502 | 1 |
▼a Thesis (Ph.D.)--Carnegie Mellon University, 2018. |
506 | |
▼a This item is not available from ProQuest Dissertations & Theses. |
520 | |
▼a Deep understanding of urban mobility is of great significance for many real-world applications, such as urban traffic management and autonomous driving. This thesis develops deep learning methodologies to extract vehicle counts from streaming re |
590 | |
▼a School code: 0041. |
650 | 4 |
▼a Computer engineering. |
650 | 4 |
▼a Artificial intelligence. |
690 | |
▼a 0464 |
690 | |
▼a 0800 |
710 | 20 |
▼a Carnegie Mellon University.
▼b Electrical and Computer Engineering. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 79-09B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0041 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998516
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자
▼b 관리자 |