MARC보기
LDR00000nmm u2200205 4500
001000000329745
00520241016150652
008181129s2018 ||| | | | eng d
020 ▼a 9780438074446
035 ▼a (MiAaPQ)AAI10822696
035 ▼a (MiAaPQ)indiana:15239
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 510
1001 ▼a Allen, Samantha.
24510 ▼a Relationships Between the Nonorientable Genus and the Normal Euler Number of Nonorientable Surfaces Whose Boundary Is a Knot.
260 ▼a [S.l.] : ▼b Indiana University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 80 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B.
500 ▼a Adviser: Charles Livingston.
5021 ▼a Thesis (Ph.D.)--Indiana University, 2018.
520 ▼a The nonorientable 4-genus is an invariant of knots which has been studied by many authors, including Gilmer and Livingston, Batson, and Ozsvath, Stipsicz, and Szabo. Given a nonorientable surface F in the 4-ball with boundary a knot, an analysis
590 ▼a School code: 0093.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a Indiana University. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-11B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0093
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998500 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자