MARC보기
LDR09492cmm u2200457Mi 4500
001000000327294
003OCoLC
00520240307135415
006m d |
007cr |||||||||||
008221013s2022 flu fob 001 0 eng d
015 ▼a GBC2I9624 ▼2 bnb
0167 ▼a 020787107 ▼2 Uk
020 ▼a 1000823768
020 ▼a 9781000823745 ▼q (PDF ebook)
020 ▼a 1000823741
020 ▼a 9781000823769 ▼q (electronic bk.)
020 ▼z 9781032267197 (hbk.)
0248 ▼a 10.1201/9781003292296 ▼2 doi
035 ▼a 3457770 ▼b (N$T)
035 ▼a (OCoLC)1357153843
037 ▼a 9781000823769 ▼b Ingram Content Group
040 ▼a UKAHL ▼b eng ▼e rda ▼e pn ▼c UKAHL ▼d UKMGB ▼d N$T ▼d 248032
049 ▼a MAIN
050 4 ▼a TA409
08204 ▼a 620.1126 ▼2 23
1001 ▼a Saxena, A. ▼q (Ashok), ▼e author.
24510 ▼a Basic fracture mechanics and its applications ▼c Ashok Saxena.
264 1 ▼a Boca Raton : ▼b CRC Press, ▼c 2022.
300 ▼a 1 online resource
336 ▼a text ▼2 rdacontent
337 ▼a computer ▼2 rdamedia
338 ▼a online resource ▼2 rdacarrier
504 ▼a Includes bibliographical references and index.
5050 ▼a <P>1. Fracture in Structural Components </P><P>1.1 Fracture in Engineering Materials and Structures: Societal Relevance </P><P>1.1.1 Safety Assessments </P><P>1.1.2 Environment and Health Hazards </P><P>1.1.3 Optimizing Costs (Fuel economy, material costs, opportunity costs) </P><P>1.1.4 Product Liability</P><P>1.2 Examples of Prominent Fractures and the Underlying Causes </P><P>1.2.1 Failures in Liberty Ships </P><P>1.2.2 Failures of Comet Aircraft </P><P>1.2.3 Cracks in A380 Aircrafts </P><P>1.2.4 Crack in a Structural Member of an Interstate Highway Bridge </P><P>1.2.5 Cracks in Human Bones </P><P>1.2.6 Aneurysms in Human Abdominal Aortas </P><P>1.3 Degradation Phenomena and Fracture in Engineering Materials and Structures </P><P>1.3.1 Crack Initiation/Formation and Growth </P><P>1.4 History of Developments in Understanding Fatigue and Fracture </P><P>1.4.1 Developments in Understanding of Fatigue </P><P>1.4.2 Understanding Brittle and Ductile Fracture </P><P>1.4.3 Early Developments in Fracture Mechanics </P><P>1.4.4 Developments in Elastic-Plastic Fracture Mechanics </P><P>1.4.5 Environment Assisted Cracking </P><P>1.4.6 Developments in Time Dependent Fracture Mechanics </P><P>1.5 Summary </P><P>2. Early Theories of Fracture </P><P>2.1 Microscopic Aspects of Fracture </P><P>2.1.1 Intergranular and Transgranular Fracture </P><P>2.1.2 Equi-Cohesive Temperature </P><P>2.1.3 Ductile and Brittle Fracture </P><P>2.2 Models of Fracture at Atomic Scale </P><P>2.3 Stress Concentration Effects of Flaws </P><P>2.4 Griffith's Theory of Brittle Fracture </P><P>2.5 Orowan's Modification to Griffith's Theory </P><P>2.6 The Concept of Crack Extension Force, G </P><P>2.6.1 Estimation of Griffith's Crack Extension Force for an Arbitrary Shaped Body </P><P>2.7 Crack Growth Resistance, R </P><P>2.8 Predicting Instability in Cracked Structures </P><P>2.8.1 Predicting Instability Conditions for a General Case</P><P>2.9 Summary </P><P>Appendix 2A: Review of Solid Mechanics</P><P>2A.1 Stress</P><P>2A.2 Strain</P><P>2A.3 Elasticity</P><P>2A.4 Elastic Strain Energy</P><P>2A.5 Stress Transformation Equations</P><P>2A.6 Stress-Strain Behavior </P><P>3. Theoretical Basis for Linear Elastic Fracture Mechanics </P><P>3.1 Classification of Engineering Structural Materials and Defects </P><P>3.2 Stress Analysis of Cracks </P><P>3.2.1 Equations of Elasticity </P><P>3.2.2 Compatibility Equations </P><P>3.2.3 Application of Airy's Stress Function to Crack Problems </P><P>3.3 Stress Intensity Parameter, K, for Various Crack Geometries and Loading Configurations by the Westergaard Method </P><P>3.4 Crack Tip Displacement Fields </P><P>3.5 The Relationship between G and K </P><P>3.6 Determining K for Other Loading and Crack Geometries </P><P>3.7 Use of Linear Superposition Principle for Deriving K-Solutions </P><P>3.8 K-Solutions for 3-D Cracks </P><P>3.9 Summary </P><P>Appendix 3A </P><P>3A.1 Cauchy-Riemann Equations </P><P>3A.2 Derivation of the Crack Tip Displacement Fields </P><P>4. Crack Tip Plasticity </P><P>4.1 Estimate of the Plastic Zone Size </P><P>4.2 Plasticity Modified Crack Tip Stress Field for SSY</P><P>4.3 Plastic Zone Shape </P><P>4.4 Crack Tip Opening Displacement (CTOD)</P><P>4.5 Summary </P><P>Appendix 4A: Plastic Yielding Under Uniaxial and Multiaxial Conditions </P><P>4A.1 Uniaxial Stress-Strain Curve </P><P>4A.2 Von Mises Yield Criterion for Multiaxial Loading</P><P>4A.3 Tresca Yield Criterion</P><P>5. Fracture Toughness and Its Measurement </P><P>5.1 Similitude and the Stress Intensity Parameter, K </P><P>5.2 Fracture Toughness as a Function of Plate Thickness </P><P>5.3 Ductile and Brittle Fracture and the LEFM Approach </P><P>5.4 Measurement of Fracture Toughness</P><P>5.4.1 Measurement of Plane Strain Fracture Toughness, K<SUB>Ic</SUB> </P><P>5.4.2 Fracture Toughness of Thin Panels </P><P>5.5 Correlations between Charpy Energy and Fracture Toughness</P><P>5.5.1 Charpy Energy versus Fracture Toughness Correlation for Lower-Shelf and Lower Transition Region </P><P>5.5.2 Charpy Energy versus Fracture Toughness Correlation for Upper-Shelf Region </P><P>5.6 Summary </P><P>Appendix 5A: Compliance Relationships for C(T) and M(T) Specimens </P><P>5A.1 Compliance Relationships for C(T) Specimen </P><P>5A.2 Compliance and K -- Relationships for M(T) Specimens </P><P>6. Fatigue Crack Growth </P><P>6.1 Introduction </P><P>6.2 Fatigue Crack Growth (or Propagation) Rates </P><P>6.2.1 Definitions </P><P>6.2.2 Mechanisms of Fatigue Crack Growth </P><P>6.2.3 Fatigue Crack Growth Life Estimation </P><P>6.3 The Effect of Load Ratio, Temperature and Frequency on Fatigue Crack Growth Rate in the Paris Regime </P><P>6.4 Wide Range Fatigue Crack Growth Behavior </P><P>6.5 Crack Tip Plasticity during Cyclic Loading</P><P>6.5.1 Cyclic Plastic Zone </P><P>6.5.2 Crack Closure during Cyclic Loading </P><P>6.6 Fatigue Cycles Involving Compressive Loading </P><P>6.7 Models for Representing Load Ratio Effects on Fatigue Crack Growth Rates </P><P>6.8 Fatigue Crack Growth Measurements (ASTM Standard E647) </P><P>6.9 Behavior of Small or Short Cracks </P><P>6.10 Fatigue Crack Growth Under Variable Amplitude Loading </P><P>6.10.1 Effects of Single Overloads/Underloads on Fatigue Crack Growth Behavior </P><P>6.10.2 Variable Amplitude Loading </P><P>6.11 Summary </P><P>7. Environment-Assisted Cracking </P><P>7.1 Introduction </P><P>7.2 Mechanisms of EAC</P><P>7.3 Relationship between EAC and K under Static Loading </P><P>7.4 Methods of Determining K<SUB>IEAC</SUB> </P><P>7.5 Relationship betwee K<SUB>IEAC</SUB> and Yield Strength and Fracture Toughness </P><P>7.6 Environment Assisted Fatigue Crack Growth </P><P>7.7 Models for Environment Assisted Fatigue Crack Growth Behavior </P><P>7.7.1 Linear Superposition Model </P><P>7.7.2 A Model for Predicting the Effect of Hydrogen Pressure on the Fatigue Crack Growth Behavior </P><P>7.8 Summary </P><P>8. Fracture under Mixed-Mode Loading </P><P>8.1 Introduction </P><P>8.2 Stress Analysis of Cracks under Mixed-Mode Conditions </P><P>8.3 Mixed Mode Considerations in Fracture of Isotropic Materials </P><P>8.3.1 Fracture Criterion Based on Energy Available for Crack Extension </P><P>8.3.2 Maximum Circumferential Stress Fracture Criterion </P><P>8.3.3 Strain Energy Density (SED) as Mixed Mode Fracture Criterion </P><P>8.4 Fracture Toughness Measurements Under Mixed-Mode Conditions</P><P>8.4.1 Fracture in Bones </P><P>8.4.2 Measurement of Fracture Toughness in Mode II (K<SUB>IIc</SUB>) </P><P>8.4.3 Measurement of Interfacial Toughness in Laminate Composites </P><P>8.5 Fatigue Crack Growth under Mixed-Mode Loading </P><P>8.6 Summary </P><P>9. Fracture and Crack Growth under Elastic/Plastic Loading </P><P>9.1 Introduction </P><P>9.2 Rice's J-Integral </P><P>9.3 J-Integral as a Fracture Parameter </P><P>9.4 Equations for Determining J in C(T) Specimens </P><P>9.5 Fatigue Crack Growth under Gross Plasticity Conditions </P><P>9.5.1 Experimental Correlations between da/dN and ?낺 </P><P>9.6 Summary </P><P>10. Creep and Creep-Fatigue Crack Growth </P><P>10.1 Introduction </P><P>10.2 Creep Crack Growth </P><P>10.2.1 C<SUP>*</SUP>- Integral </P><P>10.2.2 C(t) Integral and the Ct Parameter </P><P>10.2.3 Creep Crack Growth in Creep-brittle Materials </P><P>10.3 Crack Growth under Creep-Fatigue-Environment Conditions </P><P>10.3.1 da/dN versus ?낻 correlations </P><P>10.3.2 Creep-Fatigue Crack Growth Rates for Long Cycle Times </P><P>10.4 Summary </P><P>11. Case Studies in Applications of Fracture Mechanics</P><P>11.1 Introduction </P><P>11.1.1 Integrity Assessment of Structures and Components </P><P>11.1.2 Material and Process Selection </P><P>11.1.3 Design of Remaining Life Prediction </P><P>11.1.4 Inspection Criterion and Interval Determination </P><P>11.1.5 Failure Analysis </P><P>11.2 General Methodology for Fracture Mechanics Analysis </P><P>11.3 Case Studies </P><P>11.3.1 Optimizing Manufacturing Costs </P><P>11.3.2 Reliability of Service-Degraded Steam Turbine Rotors </P><P>11.3.3 Design of Ve
590 ▼a Added to collection customer.56279.3
650 0 ▼a Fracture mechanics.
77608 ▼i Print version: ▼z 9781032267197
85640 ▼3 EBSCOhost ▼u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3457770
938 ▼a EBSCOhost ▼b EBSC ▼n 3457770
990 ▼a 관리자
994 ▼a 92 ▼b N$T