LDR | | 01600cmm u2200361Mu 4500 |
001 | | 000000322856 |
003 | | OCoLC |
005 | | 20230613115420 |
006 | | m d |
007 | | cr cnu---unuuu |
008 | | 220806s2022 dcu o ||| 0 eng d |
020 | |
▼a 030968854X |
020 | |
▼a 9780309688543
▼q (electronic bk.) |
035 | |
▼a 3323729
▼b (N$T) |
035 | |
▼a (OCoLC)1334104403 |
040 | |
▼a EBLCP
▼b eng
▼c EBLCP
▼d UKAHL
▼d N$T
▼d 248032 |
049 | |
▼a MAIN |
050 | 4 |
▼a QE48.8 |
082 | 04 |
▼a 550.285
▼2 23/eng/20230105 |
245 | 00 |
▼a Machine Learning and Artificial Intelligence to Advance Earth System Science
▼h [electronic resource] :
▼b Opportunities and Challenges: Proceedings of a Workshop. |
260 | |
▼a Washington, D.C. :
▼b National Academies Press,
▼c 2022. |
300 | |
▼a 1 online resource (69 p.) |
500 | |
▼a Description based upon print version of record. |
590 | |
▼a WorldCat record variable field(s) change: 050, 082, 650 |
650 | 0 |
▼a Earth sciences
▼v Congresses. |
650 | 0 |
▼a Machine learning
▼v Congresses. |
650 | 0 |
▼a Artificial intelligence
▼v Congresses. |
700 | 1 |
▼a Silvern, Rachel,
▼e editor. |
710 | 2 |
▼a National Academies of Sciences, Engineering, and Medicine (U.S.),
▼e publisher. |
776 | 08 |
▼i Print version:
▼a National Academies of Sciences, Engineering, and Medicine
▼t Machine Learning and Artificial Intelligence to Advance Earth System Science
▼d Washington, D.C. : National Academies Press,c2022
▼z 9780309688536 |
856 | 40 |
▼3 EBSCOhost
▼u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3323729 |
938 | |
▼a EBSCOhost
▼b EBSC
▼n 3323729 |
990 | |
▼a 관리자 |
994 | |
▼a 92
▼b N$T |