MARC보기
LDR05521cmm u2200613 c 4500
001000000321429
003OCoLC
00520230613110817
006m d
007cr cnu---unuuu
008200711t20202020enka ob 001 0 eng d
019 ▼a 1178754958
020 ▼a 9780192605184 ▼q electronic book
020 ▼a 0192605186 ▼q electronic book
020 ▼a 9780191893001 ▼q electronic bk.
020 ▼a 0191893005 ▼q electronic bk.
020 ▼z 9780198860785
020 ▼z 0198860781
035 ▼a 2508245 ▼b (N$T)
035 ▼a (OCoLC)1163183665 ▼z (OCoLC)1178754958
040 ▼a EBLCP ▼b eng ▼e rda ▼e pn ▼c EBLCP ▼d YDXIT ▼d OCLCO ▼d N$T ▼d TEF ▼d UKOUP ▼d YDX ▼d CUV ▼d 248032
049 ▼a MAIN
050 4 ▼a QD933 ▼b .S88 2020eb
08204 ▼a 548.842 ▼2 23
1001 ▼a Sutton, Adrian P., ▼e author.
24510 ▼a Physics of elasticity and crystal defects ▼c Adrian P. Sutton ▼h [electronic resource]
250 ▼a First edition
260 ▼a Oxford ; ▼a New York, NY : ▼b Oxford University Press, ▼c 2020
300 ▼a 1 online resource : ▼b illustrations
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
4901 ▼a Oxford Series on Materials Modelling ; ▼v [6]
500 ▼a 6.12 The stress field of an edge dislocation in isotropic elasticity
504 ▼a Includes bibliographical references and indexes
5050 ▼a Cover -- Series page -- Physics of elasticity and crystal defects -- Copyright -- Foreword -- Contents -- Preface -- 1: Strain -- 1.1 The continuum approximation -- 1.2 What is deformation? -- 1.3 The displacement vector and the strain tensor -- 1.3.1 Normal strain and shear strain -- 1.4 Closing remarks -- 1.5 Problem set 1 -- 2: Stress -- 2.1 What is stress? -- 2.2 Cauchy's stress tensor in a continuum -- 2.3 Normal stresses and shear stresses -- 2.4 Stress at the atomic scale -- 2.5 Invariants of the stress tensor -- 2.5 Invariants of the stress tensor
5058 ▼a 2.6 Shear stress on a plane and the von Mises stress invarian -- 2.7 Mechanical equilibrium -- 2.8 Adiabatic and isothermal stress -- 2.9 Problem set 2 -- 3: Hooke's law and elastic constants -- 3.1 Generalised Hooke's law: elastic constants and compliances -- 3.2 The maximum number of independent elastic constants in a crystal -- 3.2.1 The elastic energy density -- 3.2.2 Matrix notation -- 3.3 Transformation of the elastic constant tensorunder a rotation -- 3.3.1 Neumann's principle -- 3.4 Isotropic materials -- 3.5 Anisotropic materials -- 3.5.1 Cubic crystals
5058 ▼a 3.5.2 The directional dependence of the elastic constants in anisotropic media -- 3.6 Further restrictions on the elastic constants -- 3.7 Elastic constants and atomic interactions -- 3.8 Isothermal and adiabatic elastic moduli -- 3.9 Problem set 3 -- 4: The Green's function in linear elasticity -- 4.1 Differential equation for the displacement field` -- 4.1.1 Navier's equation -- 4.2 The physical meaning of the elastic Green's function -- 4.2.1 Definition of the Green's function in linear elasticity -- 4.2.2 The equation for the Green's function in an infinite medium
5058 ▼a 4.2.3 Solving elastic boundary value problems with the Green's function -- 4.3 A general formula for the Green's function in anisotropic elastic media -- 4.4 The Green's function in an isotropic elastic medium -- 4.5 The multipole expansion -- 4.6 Relation between the Green's functions for an elastic continuum and a crystal lattice -- 4.7 Eshelby's ellipsoidal inclusion -- 4.8 The equation of motion and elastic waves -- 4.8.1 Elastic waves -- 4.9 The elastodynamic Green's function -- 4.10 Problem set 4 -- 5: Point defects -- 5.1 Introduction -- 5.2 The misfitting sphere model of a point defect
5058 ▼a 5.3 Interaction energies -- 5.4 The -tensor -- 5.5 Problem set 5 -- 6: Dislocations -- 6.1 Introduction -- 6.2 Dislocations as the agents of plastic deformation -- 6.3 Characterisation of dislocations: the Burgers circuit -- 6.4 Glide, climb and cross-slip -- 6.5 The interaction energy between a dislocation and another source of stress -- 6.6 The Peach-Koehler force on a dislocation -- 6.7 Volterra's formula -- 6.8 The infinitesimal loop -- 6.9 The dipole tensor of an infinitesimal loop -- 6.10 The infinitesimal loop in isotropic elasticity -- 6.11 Mura's formula
520 ▼a Although linear elasticity of defects in solids is well established, this textbook introduces the subject in a novel way by comparing key concepts at the atomic scale and at the usual continuum scale, and it explores the relationships between these treatments. There are exercises to work through, with solutions for instructors from the OUP website
588 ▼a Description based on online resource; title from digital title page (viewed on July 17, 2020)
590 ▼a Master record variable field(s) change: 050
650 0 ▼a Crystals ▼x Plastic properties.
650 0 ▼a Elasticity.
655 0 ▼a Electronic books
77608 ▼i Print version ▼a Sutton, Adrian P. ▼t Physics of Elasticity and Crystal Defects ▼d Oxford : Oxford University Press USA - OSO,c2020 ▼z 9780198860785
830 0 ▼a Oxford series on materials modelling ; ▼v 6.
85640 ▼3 EBSCOhost ▼u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2508245
938 ▼a YBP Library Services ▼b YANK ▼n 16712008
938 ▼a Oxford University Press USA ▼b OUPR ▼n EDZ0002304386
938 ▼a ProQuest Ebook Central ▼b EBLB ▼n EBL6236073
938 ▼a EBSCOhost ▼b EBSC ▼n 2508245
990 ▼a 관리자
994 ▼a 92 ▼b N$T