MARC보기
LDR06251cmm u2200493Ki 4500
001000000321423
003OCoLC
00520230613110809
006m d
007cr cnu---unuuu
008201121s2021 nju o 000 0 eng d
020 ▼a 0691189536 ▼q electronic book
020 ▼a 9780691189536 ▼q (electronic bk.)
035 ▼a 2503953 ▼b (N$T)
035 ▼a (OCoLC)1223098136
037 ▼a 22573/ctv131nb52 ▼b JSTOR
040 ▼a EBLCP ▼b eng ▼e rda ▼c EBLCP ▼d EBLCP ▼d JSTOR ▼d OCLCO ▼d OCLCF ▼d YDXIT ▼d YDX ▼d N$T ▼d 248032
049 ▼a MAIN
050 4 ▼a TJ216 ▼b .S35 2021
08204 ▼a 629.83 ▼2 23
1001 ▼a Sanfelice, Ricardo G.
24510 ▼a Hybrid Feedback Control / ▼c Ricardo G. Sanfelice. ▼h [electronic resource]
260 ▼a Princeton : ▼b Princeton University Press, ▼c [2021]
300 ▼a 1 online resource (421 p.).
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
5050 ▼a Cover -- Title -- Copyright -- Dedicaiton -- Contents -- Preface -- List of Symbols -- 1 Introduction -- 1.1 Overview -- 1.2 Why Hybrid Control? -- 1.2.1 Hybrid Models Capture Rich Behavior -- 1.2.2 Continuous-Time Systems not Stabilizable via Continuous State-Feedback Can Be Stabilized via Hybrid Control -- 1.2.3 Almost Global Asymptotic Stability Turns Global -- 1.2.4 Nonrobust Stability Becomes Robust -- 1.2.5 Controlled Intersample Behavior and Aperiodic Sampling -- 1.2.6 Hybrid Feedback Control Improves Performance -- 1.3 Exercises -- 1.4 Notes -- 2 Modeling Framework -- 2.1 Overview
5058 ▼a 2.2 On Truly Hybrid Models -- 2.3 Modeling -- 2.3.1 From Plants and Controllers to Closed-Loop Systems -- 2.3.2 Hybrid Basic Conditions -- 2.3.3 Solution Concept -- 2.3.4 Existence of Solutions to Closed-Loop Systems -- 2.3.5 Hybrid System Models with Disturbances -- 2.4 Numerical Simulation -- 2.5 Exercises -- 2.6 Notes -- 3 Notions and Analysis Tools -- 3.1 Overview -- 3.2 Notions -- 3.2.1 Asymptotic Stability -- 3.2.2 Invariance -- 3.2.3 Robustness to Disturbances -- 3.3 Analysis Tools -- 3.3.1 Hybrid Lyapunov Theorem -- 3.3.2 Hybrid Invariance Principle
5058 ▼a 3.3.3 Robustness from KL Pre-Asymptotic Stability -- 3.4 Exercises -- 3.5 Notes -- 4 Uniting Control -- 4.1 Overview -- 4.2 Hybrid Controller -- 4.3 Closed-Loop System -- 4.4 Design -- 4.5 Exercises -- 4.6 Notes -- 5 Event-Triggered Control -- 5.1 Overview -- 5.2 Hybrid Controller -- 5.3 Closed-Loop System -- 5.4 Design -- 5.4.1 Completeness of Maximal Solutions -- 5.4.2 Minimum Time in Between Events -- 5.4.3 Pre-Asymptotic Stability -- 5.5 Exercises -- 5.6 Notes -- 6 Throw-Catch Control -- 6.1 Overview -- 6.2 Hybrid Controller -- 6.3 Closed-Loop System -- 6.4 Design
5058 ▼a 6.4.1 Design of Local Stabilizer k0 -- 6.4.2 Design of Local Stabilizers ki,s and Sets Ai,s -- 6.4.3 Design of Open-Loop Control Laws -- 6.4.4 Design of Bootstrap Controller and Sets -- 6.5 Exercises -- 6.6 Notes -- 7 Synergistic Control -- 7.1 Overview -- 7.2 Hybrid Controller -- 7.3 Closed-Loop System -- 7.4 Design -- 7.4.1 The General Case -- 7.4.2 The Control Affine Case -- 7.5 Exercises -- 7.6 Notes -- 8 Supervisory Control -- 8.1 Overview -- 8.2 Hybrid Controller -- 8.3 Closed-Loop System -- 8.4 Design -- 8.5 Exercises -- 8.6 Notes -- 9 Passivity-Based Control -- 9.1 Overview
5058 ▼a 9.2 Passivity -- 9.3 Pre-Asymptotic Stability from Passivity -- 9.4 Design -- 9.5 Exercises -- 9.6 Notes -- 10 Feedback Design via Control Lyapunov Functions -- 10.1 Overview -- 10.2 Control Lyapunov Functions -- 10.3 Design -- 10.3.1 Nominal Design -- 10.3.2 Robust Design -- 10.4 Exercises -- 10.5 Notes -- 11 Invariants and Invariance-Based Control -- 11.1 Overview -- 11.2 Nominal and Robust Forward Invariance -- 11.2.1 Forward Invariance -- 11.2.2 Weak Forward Invariance -- 11.2.3 Robust Forward Invariance -- 11.3 Design -- 11.4 Exercises -- 11.5 Notes -- 12 Temporal Logic -- 12.1 Overview
520 ▼a A comprehensive introduction to hybrid control systems and designHybrid control systems exhibit both discrete changes, or jumps, and continuous changes, or flow. An example of a hybrid control system is the automatic control of the temperature in a room: the temperature changes continuously, but the control algorithm toggles the heater on or off intermittently, triggering a discrete jump within the algorithm. Hybrid control systems feature widely across disciplines, including biology, computer science, and engineering, and examples range from the control of cellular responses to self-driving cars. Although classical control theory provides powerful tools for analyzing systems that exhibit either flow or jumps, it is ill-equipped to handle hybrid control systems.In Hybrid Feedback Control, Ricardo Sanfelice presents a self-contained introduction to hybrid control systems and develops new tools for their analysis and design. Hybrid behavior can occur in one or more subsystems of a feedback system, and Sanfelice offers a unified control theory framework, filling an important gap in the control theory literature. In addition to the theoretical framework, he includes a plethora of examples and exercises, a Matlab toolbox (as well as two open-source versions), and an insightful overview at the beginning of each chapter.Relevant to dynamical systems theory, applied mathematics, and computer science, Hybrid Feedback Control will be useful to students and researchers working on hybrid systems, cyber-physical systems, control, and automation.
588 ▼a Description based on online resource; title from digital title page (viewed on March 03, 2021).
590 ▼a Added to collection customer.56279.3
650 0 ▼a Feedback control systems.
650 7 ▼a Feedback control systems. ▼2 fast ▼0 (OCoLC)fst00922447
655 4 ▼a Electronic books.
77608 ▼i Print version: ▼a Sanfelice, Ricardo G. ▼t Hybrid Feedback Control ▼d Princeton : Princeton University Press,c2021 ▼z 9780691180229
85640 ▼3 EBSCOhost ▼u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2503953
938 ▼a YBP Library Services ▼b YANK ▼n 16826692
938 ▼a ProQuest Ebook Central ▼b EBLB ▼n EBL6376042
938 ▼a EBSCOhost ▼b EBSC ▼n 2503953
990 ▼a 관리자
994 ▼a 92 ▼b N$T