MARC보기
LDR05564cmm u2200565Mi 4500
001000000321385
003OCoLC
00520230613110716
006m d
007cr cnu---unuuu
008090713s2021 xx o 000 u eng d
019 ▼a 1231521939
020 ▼a 9780262362658 ▼q (electronic bk.)
020 ▼a 0262362651
020 ▼z 0262542234
020 ▼z 9780262542234
02802 ▼a EB00822532 ▼b Recorded Books
035 ▼a 2483406 ▼b (N$T)
035 ▼a (OCoLC)1162510217 ▼z (OCoLC)1231521939
040 ▼a RECBK ▼b eng ▼e rda ▼c RECBK ▼d OCLCO ▼d OCLCF ▼d EBLCP ▼d YDX ▼d N$T ▼d YDX ▼d 248032
049 ▼a MAIN
050 4 ▼a QA8.6 ▼b .H36 2021
08204 ▼a 510.1 ▼2 23
1001 ▼a Hamkins, Joel David.
24510 ▼a Lectures on the philosophy of mathematics / ▼c Joel David Hamkins. ▼h [electronic resource]
260 ▼a [S.l.] : ▼b The MIT Press, ▼c 2021.
300 ▼a 1 online resource
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
5050 ▼a Intro -- Title Page -- Copyright -- Dedication -- Table of Contents -- Preface -- About the Author -- 1. Numbers -- 1.1. Numbers versus numerals -- 1.2. Number systems -- Natural numbers -- Integers -- Rational numbers -- 1.3. Incommensurable numbers -- An alternative geometric argument -- 1.4. Platonism -- Plenitudinous platonism -- 1.5. Logicism -- Equinumerosity -- The Cantor-Hume principle -- The Julius Caesar problem -- Numbers as equinumerosity classes -- Neologicism -- 1.6. Interpreting arithmetic -- Numbers as equinumerosity classes -- Numbers as sets -- Numbers as primitives
5058 ▼a Numbers as morphisms -- Numbers as games -- Junk theorems -- Interpretation of theories -- 1.7. What numbers could not be -- The epistemological problem -- 1.8. Dedekind arithmetic -- Arithmetic categoricity -- 1.9. Mathematical induction -- Fundamental theorem of arithmetic -- Infinitude of primes -- 1.10. Structuralism -- Definability versus Leibnizian structure -- Role of identity in the formal language -- Isomorphism orbit -- Categoricity -- Structuralism in mathematical practice -- Eliminative structuralism -- Abstract structuralism -- 1.11. What is a real number? -- Dedekind cuts
5058 ▼a Theft and honest toil -- Cauchy real numbers -- Real numbers as geometric continuum -- Categoricity for the real numbers -- Categoricity for the real continuum -- 1.12. Transcendental numbers -- The transcendence game -- 1.13. Complex numbers -- Platonism for complex numbers -- Categoricity for the complex field -- A complex challenge for structuralism? -- Structure as reduct of rigid structure -- 1.14. Contemporary type theory -- 1.15. More numbers -- 1.16. What is a philosophy for? -- 1.17. Finally, what is a number? -- Questions for further thought -- Further reading -- Credits -- 2. Rigor
5058 ▼a 2.1. Continuity -- Informal account of continuity -- The definition of continuity -- The continuity game -- Estimation in analysis -- Limits -- 2.2. Instantaneous change -- Infinitesimals -- Modern definition of the derivative -- 2.3. An enlarged vocabulary of concepts -- 2.4. The least-upper-bound principle -- Consequences of completeness -- Continuous induction -- 2.5. Indispensability of mathematics -- Science without numbers -- Fictionalism -- The theory/metatheory distinction -- 2.6. Abstraction in the function concept -- The Devil's staircase -- Space-filling curves
5058 ▼a Conway base-13 function -- 2.7. Infinitesimals revisited -- Nonstandard analysis and the hyperreal numbers -- Calculus in nonstandard analysis -- Classical model-construction perspective -- Axiomatic approach -- "The" hyperreal numbers? -- Radical nonstandardness perspective -- Translating between nonstandard and classical perspectives -- Criticism of nonstandard analysis -- Questions for further thought -- Further reading -- Credits -- 3. Infinity -- 3.1. Hilbert's Grand Hotel -- Hilbert's bus -- Hilbert's train -- 3.2. Countable sets -- 3.3. Equinumerosity -- 3.4. Hilbert's half-marathon
520 ▼a An introduction to the philosophy of mathematics grounded in mathematics and motivated by mathematical inquiry and practice. In this book, Joel David Hamkins offers an introduction to the philosophy of mathematics that is grounded in mathematics and motivated by mathematical inquiry and practice. He treats philosophical issues as they arise organically in mathematics, discussing such topics as platonism, realism, logicism, structuralism, formalism, infinity, and intuitionism in mathematical contexts. He organizes the book by mathematical themes--numbers, rigor, geometry, proof, computability, incompleteness, and set theory--that give rise again and again to philosophical considerations.
588 ▼a Title from resource description page (Recorded Books, viewed June 29, 2020).
590 ▼a Master record variable field(s) change: 050, 650
650 0 ▼a Mathematics ▼x Philosophy.
650 7 ▼a MATHEMATICS / History & Philosophy. ▼2 bisacsh
650 7 ▼a Mathematics. ▼2 fast ▼0 (OCoLC)fst01012163
655 4 ▼a Electronic books.
7102 ▼a Recorded Books, Inc.
77608 ▼i Print version: ▼z 0262542234 ▼z 9780262542234 ▼w (OCoLC)1155711245
85640 ▼3 EBSCOhost ▼u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2483406
938 ▼a ProQuest Ebook Central ▼b EBLB ▼n EBL6454625
938 ▼a Recorded Books, LLC ▼b RECE ▼n rbeEB00822532
938 ▼a YBP Library Services ▼b YANK ▼n 301876520
938 ▼a EBSCOhost ▼b EBSC ▼n 2483406
990 ▼a 관리자
994 ▼a 92 ▼b N$T