MARC보기
LDR05727cmm u2200649Mu 4500
001000000317985
003OCoLC
00520230525183841
006m d
007cr -n---------
008200919s2020 xx o ||| 0 eng d
019 ▼a 1192971225
020 ▼a 9781800569409
020 ▼a 1800569408
035 ▼a 2589264 ▼b (N$T)
035 ▼a (OCoLC)1193116825 ▼z (OCoLC)1192971225
040 ▼a EBLCP ▼b eng ▼c EBLCP ▼d EBLCP ▼d NLW ▼d UKAHL ▼d YDX ▼d N$T ▼d 248032
049 ▼a MAIN
050 4 ▼a Q325.5 ▼b .S62 2020b
066 ▼c (S
08204 ▼a 006.31 ▼2 23
1001 ▼a So, Anthony.
24514 ▼a The the Data Science Workshop ▼h [electronic resource] : ▼b Learn How You Can Build Machine Learning Models and Create Your Own Real-World Data Science Projects, 2nd Edition.
250 ▼a 2nd ed.
260 ▼a Birmingham : ▼b Packt Publishing, Limited, ▼c 2020.
300 ▼a 1 online resource (823 p.)
500 ▼a Description based upon print version of record.
500 ▼a Correlation Matrix and Visualization
5050 ▼a Cover -- FM -- Copyright -- Table of Contents -- Preface -- Chapter 1: Introduction to Data Science in Python -- Introduction -- Application of Data Science -- What Is Machine Learning? -- Supervised Learning -- Unsupervised Learning -- Reinforcement Learning -- Overview of Python -- Types of Variable -- Numeric Variables -- Text Variables -- Python List -- Python Dictionary -- Exercise 1.01: Creating a Dictionary That Will Contain Machine Learning Algorithms -- Python for Data Science -- The pandas Package -- DataFrame and Series -- CSV Files -- Excel Spreadsheets -- JSON
5058 ▼a Exercise 2.01: Loading and Preparing the Data for Analysis -- The Correlation Coefficient -- Exercise 2.02: Graphical Investigation of Linear Relationships Using Python -- Exercise 2.03: Examining a Possible Log-Linear Relationship Using Python -- The Statsmodels formula API -- Exercise 2.04: Fitting a Simple Linear Regression Model Using the Statsmodels formula API -- Analyzing the Model Summary -- The Model Formula Language -- Intercept Handling -- Activity 2.01: Fitting a Log-Linear Model Using the Statsmodels Formula API -- Multiple Regression Analysis
5058 ▼a Exercise 2.05: Fitting a Multiple Linear Regression Model Using the Statsmodels Formula API -- Assumptions of Regression Analysis -- Activity 2.02: Fitting a Multiple Log-Linear Regression Model -- Explaining the Results of Regression Analysis -- Regression Analysis Checks and Balances -- The F-test -- The t-test -- Summary -- Chapter 3: Binary Classification -- Introduction -- Understanding the Business Context -- Business Discovery -- Exercise 3.01: Loading and Exploring the Data from the Dataset -- Testing Business Hypotheses Using Exploratory Data Analysis
5058 ▼a Visualization for Exploratory Data Analysis -- Exercise 3.02: Business Hypothesis Testing for Age versus Propensity for a Term Loan -- Intuitions from the Exploratory Analysis -- Activity 3.01: Business Hypothesis Testing to Find Employment Status versus Propensity for Term Deposits -- Feature Engineering -- Business-Driven Feature Engineering -- Exercise 3.03: Feature Engineering -- Exploration of Individual Features -- Exercise 3.04: Feature Engineering -- Creating New Features from Existing Ones -- Data-Driven Feature Engineering -- A Quick Peek at Data Types and a Descriptive Summary
520 ▼a The Data Science Workshop equips you with the basic skills you need to start working on a variety of data science projects. You'll work through the essential building blocks of a data science project gradually through the book, and then put all the pieces together to consolidate your knowledge and apply your learnings in the real world.
590 ▼a Master record variable field(s) change: 050, 082, 650 - OCLC control number change
650 7 ▼a Programming & scripting languages: general. ▼2 bicssc
650 7 ▼a Data capture & analysis. ▼2 bicssc
650 7 ▼a Information visualization. ▼2 bicssc
650 7 ▼a Computers ▼x Data Processing. ▼2 bisacsh
650 7 ▼a Computers ▼x Programming Languages ▼x Python. ▼2 bisacsh
650 0 ▼a Machine learning.
650 0 ▼a Electronic data processing.
650 0 ▼a Statistics ▼x Data processing.
650 0 ▼a Python (Computer program language)
650 0 ▼a Application software ▼x Development.
655 0 ▼a Electronic books.
7001 ▼a Joseph, Thomas V.
7001 ▼a John, Robert Thas.
7001 ▼a Worsley, Andrew.
7001 ▼a Asare, Samuel.
77608 ▼i Print version: ▼a So, Anthony ▼t The the Data Science Workshop : Learn How You Can Build Machine Learning Models and Create Your Own Real-World Data Science Projects, 2nd Edition ▼d Birmingham : Packt Publishing, Limited,c2020
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2589264
8808 ▼6 505-00 ▼a Exercise 1.02: Loading Data of Different Formats into a pandas DataFrame -- Scikit-Learn -- What Is a Model-- Model Hyperparameters -- The sklearn API -- Exercise 1.03: Predicting Breast Cancer from a Dataset Using sklearn -- Activity 1.01: Train a Spam Detector Algorithm -- Summary -- Chapter 2: Regression -- Introduction -- Simple Linear Regression -- The Method of Least Squares -- Multiple Linear Regression -- Estimating the Regression Coefficients (棺0, 棺1, 棺2 and 棺3) -- Logarithmic Transformations of Variables -- Correlation Matrices -- Conducting Regression Analysis Using Python
938 ▼a Askews and Holts Library Services ▼b ASKH ▼n AH37727423
938 ▼a ProQuest Ebook Central ▼b EBLB ▼n EBL6326389
938 ▼a YBP Library Services ▼b YANK ▼n 301489357
938 ▼a EBSCOhost ▼b EBSC ▼n 2589264
990 ▼a 관리자
994 ▼a 92 ▼b N$T