LDR | | 05779cmm u2200577Ii 4500 |
001 | | 000000317945 |
003 | | OCoLC |
005 | | 20230525183745 |
006 | | m d |
007 | | cr unu|||||||| |
008 | | 201027t20202020enka o 000 0 eng d |
015 | |
▼a GBC094833
▼2 bnb |
016 | 7 |
▼a 019859997
▼2 Uk |
019 | |
▼a 1180969905
▼a 1181834366
▼a 1197737347 |
020 | |
▼a 9781838823580
▼q electronic book |
020 | |
▼a 1838823581
▼q electronic book |
020 | |
▼z 9781838826048 |
035 | |
▼a 2562942
▼b (N$T) |
035 | |
▼a (OCoLC)1201697326
▼z (OCoLC)1180969905
▼z (OCoLC)1181834366
▼z (OCoLC)1197737347 |
037 | |
▼a CL0501000160
▼b Safari Books Online |
040 | |
▼a UMI
▼b eng
▼e rda
▼e pn
▼c UMI
▼d UMI
▼d YDXIT
▼d OCLCF
▼d OCLCO
▼d YDX
▼d EBLCP
▼d UKAHL
▼d UKMGB
▼d N$T
▼d 248032 |
049 | |
▼a MAIN |
050 | 4 |
▼a Q325.5
▼b .A57 2020 |
082 | 04 |
▼a 006.31
▼2 23 |
100 | 1 |
▼a Amr, Tarek,
▼e author. |
245 | 10 |
▼a Hands-on machine learning with scikit-learn and scientific Python toolkits :
▼b a practical guide to implementing supervised and unsupervised machine learning algorithms in Python /
▼c Tarek Amr. |
260 | |
▼a Birmingham, UK :
▼b Packt Publishing, Limited,
▼c 2020. |
300 | |
▼a 1 online resource (1 volume) :
▼b illustrations |
336 | |
▼a text
▼b txt
▼2 rdacontent |
337 | |
▼a computer
▼b c
▼2 rdamedia |
338 | |
▼a online resource
▼b cr
▼2 rdacarrier |
505 | 0 |
▼a Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Supervised Learning -- Chapter 1: Introduction to Machine Learning -- Understanding machine learning -- Types of machine learning algorithms -- Supervised learning -- Classification versus regression -- Supervised learning evaluation -- Unsupervised learning -- Reinforcement learning -- The model development life cycle -- Understanding a problem -- Splitting our data -- Finding the best manner to split the data -- Making sure the training and the test datasets are separate |
505 | 8 |
▼a Development set -- Evaluating our model -- Deploying in production and monitoring -- Iterating -- When to use machine learning -- Introduction to scikit-learn -- It plays well with the Python data ecosystem -- Practical level of abstraction -- When not to use scikit-learn -- Installing the packages you need -- Introduction to pandas -- Python's scientific computing ecosystem conventions -- Summary -- Further reading -- Chapter 2: Making Decisions with Trees -- Understanding decision trees -- What are decision trees? -- Iris classification -- Loading the Iris dataset -- Splitting the data |
505 | 8 |
▼a Training the model and using it for prediction -- Evaluating our predictions -- Which features were more important? -- Displaying the internal tree decisions -- How do decision trees learn? -- Splitting criteria -- Preventing overfitting -- Predictions -- Getting a more reliable score -- What to do now to get a more reliable score -- ShuffleSplit -- Tuning the hyperparameters for higher accuracy -- Splitting the data -- Trying different hyperparameter values -- Comparing the accuracy scores -- Visualizing the tree's decision boundaries -- Feature engineering -- Building decision tree regressors |
505 | 8 |
▼a Predicting people's heights -- Regressor's evaluation -- Setting sample weights -- Summary -- Chapter 3: Making Decisions with Linear Equations -- Understanding linear models -- Linear equations -- Linear regression -- Estimating the amount paid to the taxi driver -- Predicting house prices in Boston -- Data exploration -- Splitting the data -- Calculating a baseline -- Training the linear regressor -- Evaluating our model's accuracy -- Showing feature coefficients -- Scaling for more meaningful coefficients -- Adding polynomial features -- Fitting the linear regressor with the derived features |
505 | 8 |
▼a Regularizing the regressor -- Training the lasso regressor -- Finding the optimum regularization parameter -- Finding regression intervals -- Getting to know additional linear regressors -- Using logistic regression for classification -- Understanding the logistic function -- Plugging the logistic function into a linear model -- Objective function -- Regularization -- Solvers -- Configuring the logistic regression classifier -- Classifying the Iris dataset using logistic regression -- Understanding the classifier's decision boundaries -- Getting to know additional linear classifiers -- Summary |
520 | |
▼a This book covers the theory and practice of building data-driven solutions. Includes the end-to-end process, using supervised and unsupervised algorithms. With each algorithm, you will learn the data acquisition and data engineering methods, the apt metrics, and the available hyper-parameters. You will learn how to deploy the models in production. |
588 | |
▼a Description based on online resource; title from digital title page (viewed on November 23, 2020). |
590 | |
▼a OCLC control number change |
650 | 0 |
▼a Machine learning. |
650 | 0 |
▼a Python (Computer program language) |
650 | 7 |
▼a Machine learning.
▼2 fast
▼0 (OCoLC)fst01004795 |
650 | 7 |
▼a Python (Computer program language)
▼2 fast
▼0 (OCoLC)fst01084736 |
655 | 4 |
▼a Electronic books. |
776 | 08 |
▼i Print version:
▼a Amr, Tarek
▼t Hands-On Machine Learning with Scikit-learn and Scientific Python Toolkits : A Practical Guide to Implementing Supervised and Unsupervised Machine Learning Algorithms in Python
▼d Birmingham : Packt Publishing, Limited,c2020 |
856 | 40 |
▼3 EBSCOhost
▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2562942 |
938 | |
▼a YBP Library Services
▼b YANK
▼n 16873209 |
938 | |
▼a Askews and Holts Library Services
▼b ASKH
▼n AH37504100 |
938 | |
▼a ProQuest Ebook Central
▼b EBLB
▼n EBL6270729 |
938 | |
▼a EBSCOhost
▼b EBSC
▼n 2562942 |
990 | |
▼a 관리자 |
994 | |
▼a 92
▼b N$T |