MARC보기
LDR05779cmm u2200577Ii 4500
001000000317945
003OCoLC
00520230525183745
006m d
007cr unu||||||||
008201027t20202020enka o 000 0 eng d
015 ▼a GBC094833 ▼2 bnb
0167 ▼a 019859997 ▼2 Uk
019 ▼a 1180969905 ▼a 1181834366 ▼a 1197737347
020 ▼a 9781838823580 ▼q electronic book
020 ▼a 1838823581 ▼q electronic book
020 ▼z 9781838826048
035 ▼a 2562942 ▼b (N$T)
035 ▼a (OCoLC)1201697326 ▼z (OCoLC)1180969905 ▼z (OCoLC)1181834366 ▼z (OCoLC)1197737347
037 ▼a CL0501000160 ▼b Safari Books Online
040 ▼a UMI ▼b eng ▼e rda ▼e pn ▼c UMI ▼d UMI ▼d YDXIT ▼d OCLCF ▼d OCLCO ▼d YDX ▼d EBLCP ▼d UKAHL ▼d UKMGB ▼d N$T ▼d 248032
049 ▼a MAIN
050 4 ▼a Q325.5 ▼b .A57 2020
08204 ▼a 006.31 ▼2 23
1001 ▼a Amr, Tarek, ▼e author.
24510 ▼a Hands-on machine learning with scikit-learn and scientific Python toolkits : ▼b a practical guide to implementing supervised and unsupervised machine learning algorithms in Python / ▼c Tarek Amr.
260 ▼a Birmingham, UK : ▼b Packt Publishing, Limited, ▼c 2020.
300 ▼a 1 online resource (1 volume) : ▼b illustrations
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
5050 ▼a Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Supervised Learning -- Chapter 1: Introduction to Machine Learning -- Understanding machine learning -- Types of machine learning algorithms -- Supervised learning -- Classification versus regression -- Supervised learning evaluation -- Unsupervised learning -- Reinforcement learning -- The model development life cycle -- Understanding a problem -- Splitting our data -- Finding the best manner to split the data -- Making sure the training and the test datasets are separate
5058 ▼a Development set -- Evaluating our model -- Deploying in production and monitoring -- Iterating -- When to use machine learning -- Introduction to scikit-learn -- It plays well with the Python data ecosystem -- Practical level of abstraction -- When not to use scikit-learn -- Installing the packages you need -- Introduction to pandas -- Python's scientific computing ecosystem conventions -- Summary -- Further reading -- Chapter 2: Making Decisions with Trees -- Understanding decision trees -- What are decision trees? -- Iris classification -- Loading the Iris dataset -- Splitting the data
5058 ▼a Training the model and using it for prediction -- Evaluating our predictions -- Which features were more important? -- Displaying the internal tree decisions -- How do decision trees learn? -- Splitting criteria -- Preventing overfitting -- Predictions -- Getting a more reliable score -- What to do now to get a more reliable score -- ShuffleSplit -- Tuning the hyperparameters for higher accuracy -- Splitting the data -- Trying different hyperparameter values -- Comparing the accuracy scores -- Visualizing the tree's decision boundaries -- Feature engineering -- Building decision tree regressors
5058 ▼a Predicting people's heights -- Regressor's evaluation -- Setting sample weights -- Summary -- Chapter 3: Making Decisions with Linear Equations -- Understanding linear models -- Linear equations -- Linear regression -- Estimating the amount paid to the taxi driver -- Predicting house prices in Boston -- Data exploration -- Splitting the data -- Calculating a baseline -- Training the linear regressor -- Evaluating our model's accuracy -- Showing feature coefficients -- Scaling for more meaningful coefficients -- Adding polynomial features -- Fitting the linear regressor with the derived features
5058 ▼a Regularizing the regressor -- Training the lasso regressor -- Finding the optimum regularization parameter -- Finding regression intervals -- Getting to know additional linear regressors -- Using logistic regression for classification -- Understanding the logistic function -- Plugging the logistic function into a linear model -- Objective function -- Regularization -- Solvers -- Configuring the logistic regression classifier -- Classifying the Iris dataset using logistic regression -- Understanding the classifier's decision boundaries -- Getting to know additional linear classifiers -- Summary
520 ▼a This book covers the theory and practice of building data-driven solutions. Includes the end-to-end process, using supervised and unsupervised algorithms. With each algorithm, you will learn the data acquisition and data engineering methods, the apt metrics, and the available hyper-parameters. You will learn how to deploy the models in production.
588 ▼a Description based on online resource; title from digital title page (viewed on November 23, 2020).
590 ▼a OCLC control number change
650 0 ▼a Machine learning.
650 0 ▼a Python (Computer program language)
650 7 ▼a Machine learning. ▼2 fast ▼0 (OCoLC)fst01004795
650 7 ▼a Python (Computer program language) ▼2 fast ▼0 (OCoLC)fst01084736
655 4 ▼a Electronic books.
77608 ▼i Print version: ▼a Amr, Tarek ▼t Hands-On Machine Learning with Scikit-learn and Scientific Python Toolkits : A Practical Guide to Implementing Supervised and Unsupervised Machine Learning Algorithms in Python ▼d Birmingham : Packt Publishing, Limited,c2020
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2562942
938 ▼a YBP Library Services ▼b YANK ▼n 16873209
938 ▼a Askews and Holts Library Services ▼b ASKH ▼n AH37504100
938 ▼a ProQuest Ebook Central ▼b EBLB ▼n EBL6270729
938 ▼a EBSCOhost ▼b EBSC ▼n 2562942
990 ▼a 관리자
994 ▼a 92 ▼b N$T