MARC보기
LDR05435cmm u2200589Ii 4500
001000000317905
003OCoLC
00520230525183649
006m d
007cr unu||||||||
008201027s2020 enka o 000 0 eng d
019 ▼a 1178714596 ▼a 1181842248 ▼a 1191043302
020 ▼a 9781838985462
020 ▼a 1838985468
020 ▼z 9781839219061
035 ▼a 2532421 ▼b (N$T)
035 ▼a (OCoLC)1201697296 ▼z (OCoLC)1178714596 ▼z (OCoLC)1181842248 ▼z (OCoLC)1191043302
037 ▼a CL0501000160 ▼b Safari Books Online
040 ▼a UMI ▼b eng ▼e rda ▼e pn ▼c UMI ▼d EBLCP ▼d UKAHL ▼d YDX ▼d N$T ▼d OCLCF ▼d 248032
049 ▼a MAIN
050 4 ▼a QA76.87
08204 ▼a 006.31 ▼2 23
1001 ▼a Saleh, Hyatt, ▼e author.
24514 ▼a The machine learning workshop.
250 ▼a Second edition.
260 ▼a Birmingham, UK : ▼b Packt Publishing, ▼c 2020.
300 ▼a 1 online resource (1 volume) : ▼b illustrations
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
5050 ▼a Cover -- FM -- Copyright -- Table of Contents -- Preface -- Chapter 1: Introduction to Scikit-Learn -- Introduction -- Introduction to Machine Learning -- Applications of ML -- Choosing the Right ML Algorithm -- Scikit-Learn -- Advantages of Scikit-Learn -- Disadvantages of Scikit-Learn -- Other Frameworks -- Data Representation -- Tables of Data -- Features and Target Matrices -- Exercise 1.01: Loading a Sample Dataset and Creating the Features and Target Matrices -- Activity 1.01: Selecting a Target Feature and Creating a Target Matrix -- Data Preprocessing -- Messy Data -- Missing Values
5058 ▼a Outliers -- Exercise 1.02: Dealing with Messy Data -- Dealing with Categorical Features -- Feature Engineering -- Exercise 1.03: Applying Feature Engineering to Text Data -- Rescaling Data -- Exercise 1.04: Normalizing and Standardizing Data -- Activity 1.02: Pre-processing an Entire Dataset -- Scikit-Learn API -- How Does It Work? -- Estimator -- Predictor -- Transformer -- Supervised and Unsupervised Learning -- Supervised Learning -- Unsupervised Learning -- Summary -- Chapter 2: Unsupervised Learning -- Real-Life Applications -- Introduction -- Clustering -- Clustering Types
5058 ▼a Applications of Clustering -- Exploring a Dataset -- Wholesale Customers Dataset -- Understanding the Dataset -- Data Visualization -- Loading the Dataset Using pandas -- Visualization Tools -- Exercise 2.01: Plotting a Histogram of One Feature from the Circles Dataset -- Activity 2.01: Using Data Visualization to Aid the Pre-processing Process -- k-means Algorithm -- Understanding the Algorithm -- Initialization Methods -- Choosing the Number of Clusters -- Exercise 2.02: Importing and Training the k-means Algorithm over a Dataset -- Activity 2.02: Applying the k-means Algorithm to a Dataset
5058 ▼a Mean-Shift Algorithm -- Understanding the Algorithm -- Exercise 2.03: Importing and Training the Mean-Shift Algorithm over a Dataset -- Activity 2.03: Applying the Mean-Shift Algorithm to a Dataset -- DBSCAN Algorithm -- Understanding the Algorithm -- Exercise 2.04: Importing and Training the DBSCAN Algorithm over a Dataset -- Activity 2.04: Applying the DBSCAN Algorithm to the Dataset -- Evaluating the Performance of Clusters -- Available Metrics in Scikit-Learn -- Exercise 2.05: Evaluating the Silhouette Coefficient Score and Calinski-Harabasz Index
5058 ▼a Activity 2.05: Measuring and Comparing the Performance of the Algorithms -- Summary -- Chapter 3: Supervised Learning -- Key Steps -- Introduction -- Supervised Learning Tasks -- Model Validation and Testing -- Data Partitioning -- Split Ratio -- Exercise 3.01: Performing a Data Partition on a Sample Dataset -- Cross-Validation -- Exercise 3.02: Using Cross-Validation to Partition the Train Set into a Training and a Validation Set -- Activity 3.01: Data Partitioning on a Handwritten Digit Dataset -- Evaluation Metrics -- Evaluation Metrics for Classification Tasks -- Confusion Matrix -- Accuracy
520 ▼a With expert guidance and real-world examples, The Machine Learning Workshop gets you up and running with programming machine learning algorithms. By showing you how to leverage scikit-learn's flexibility, it teaches you all the skills you need to use machine learning to solve real-world problems.
588 ▼a Description based on online resource; title from title page (viewed October 22, 2020).
590 ▼a OCLC control number change
650 0 ▼a Machine learning.
650 0 ▼a Neural networks (Computer science)
650 0 ▼a Artificial intelligence.
650 7 ▼a Machine learning ▼2 fast ▼0 (OCoLC)fst01004795
650 7 ▼a Python (Computer program language) ▼2 fast ▼0 (OCoLC)fst01084736
655 4 ▼a Electronic books.
655 0 ▼a Electronic books.
77608 ▼i Print version: ▼a Saleh, Hyatt ▼t The the Machine Learning Workshop : Get Ready to Develop Your Own High-Performance Machine Learning Algorithms with Scikit-learn, 2nd Edition ▼d Birmingham : Packt Publishing, Limited,c2020
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2532421
938 ▼a ProQuest Ebook Central ▼b EBLB ▼n EBL6269367
938 ▼a Askews and Holts Library Services ▼b ASKH ▼n AH37507361
938 ▼a YBP Library Services ▼b YANK ▼n 301401445
938 ▼a EBSCOhost ▼b EBSC ▼n 2532421
990 ▼a 관리자
994 ▼a 92 ▼b N$T