MARC보기
LDR05702cmm u2200613Ii 4500
001000000317895
003OCoLC
00520230525183635
006m d
007cr unu||||||||
008201027s2020 enka ob 000 0 eng d
019 ▼a 1176510937 ▼a 1178652244
020 ▼a 9781838988654
020 ▼a 1838988653
020 ▼z 9781838985097
035 ▼a 2527744 ▼b (N$T)
035 ▼a (OCoLC)1202027150 ▼z (OCoLC)1176510937 ▼z (OCoLC)1178652244
037 ▼a CL0501000159 ▼b Safari Books Online
040 ▼a UMI ▼b eng ▼e rda ▼e pn ▼c UMI ▼d EBLCP ▼d UKAHL ▼d YDX ▼d N$T ▼d OCLCF ▼d 248032
049 ▼a MAIN
050 4 ▼a QA76.73.P98
08204 ▼a 003.3 ▼2 23
1001 ▼a Ciaburro, Giuseppe, ▼e author.
24510 ▼a Hands-on simulation modeling with Python : ▼b develop simulation models to get accurate results and enhance decision-making processes / ▼c Giuseppe Ciaburro.
260 ▼a Birmingham, UK : ▼b Packt Publishing, ▼c 2020.
300 ▼a 1 online resource (1 volume) : ▼b illustrations
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
504 ▼a Includes bibliographical references.
5050 ▼a Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Getting Started with Numerical Simulation -- Chapter 1: Introducing Simulation Models -- Introducing simulation models -- Decision-making workflow -- Comparing modeling and simulation -- Pros and cons of simulation modeling -- Simulation modeling terminology -- Classifying simulation models -- Comparing static and dynamic models -- Comparing deterministic and stochastic models -- Comparing continuous and discrete models -- Approaching a simulation-based problem
5058 ▼a Problem analysis -- Data collection -- Setting up the simulation model -- Simulation software selection -- Verification of the software solution -- Validation of the simulation model -- Simulation and analysis of results -- Dynamical systems modeling -- Managing workshop machinery -- Simple harmonic oscillator -- Predator-prey model -- Summary -- Chapter 2: Understanding Randomness and Random Numbers -- Technical requirements -- Stochastic processes -- Types of stochastic process -- Examples of stochastic processes -- The Bernoulli process -- Random walk -- The Poisson process
5058 ▼a Random number simulation -- Probability distribution -- Properties of random numbers -- The pseudorandom number generator -- The pros and cons of a random number generator -- Random number generation algorithms -- Linear congruential generator -- Random numbers with uniform distribution -- Lagged Fibonacci generator -- Testing uniform distribution -- The chi-squared test -- Uniformity test -- Exploring generic methods for random distributions -- The inverse transform sampling method -- The acceptance-rejection method -- Random number generation using Python -- Introducing the random module
5058 ▼a The random.random() function -- The random.seed() function -- The random.uniform() function -- The random.randint() function -- The random.choice() function -- The random.sample() function -- Generating real-valued distributions -- Summary -- Chapter 3: Probability and Data Generation Processes -- Technical requirements -- Explaining probability concepts -- Types of events -- Calculating probability -- Probability definition with an example -- Understanding Bayes' theorem -- Compound probability -- Bayes' theorem -- Exploring probability distributions -- Probability density function
5058 ▼a Mean and variance -- Uniform distribution -- Binomial distribution -- Normal distribution -- Summary -- Section 2: Simulation Modeling Algorithms and Techniques -- Chapter 4: Exploring Monte Carlo Simulations -- Technical requirements -- Introducing Monte Carlo simulation -- Monte Carlo components -- First Monte Carlo application -- Monte Carlo applications -- Applying the Monte Carlo method for Pi estimation -- Understanding the central limit theorem -- Law of large numbers -- Central limit theorem -- Applying Monte Carlo simulation -- Generating probability distributions
520 ▼a Developers working with the simulation models will be able to put their knowledge to work with this practical guide. You will work with real-world data to uncover various patterns used in complex systems using Python. The book provides a hands-on approach to implementation and associated methodologies to improve or optimize systems.
588 ▼a Description based on online resource; title from cover (Safari, viewed October 27, 2020).
590 ▼a OCLC control number change
650 0 ▼a Python (Computer program language)
650 0 ▼a Computer simulation.
650 0 ▼a Simulation methods.
650 0 ▼a Decision making ▼x Data processing.
650 7 ▼a Computer programming. ▼2 fast ▼0 (OCoLC)fst00872390
650 7 ▼a Computer simulation. ▼2 fast ▼0 (OCoLC)fst00872518
650 7 ▼a Python (Computer program language) ▼2 fast ▼0 (OCoLC)fst01084736
655 4 ▼a Electronic books.
655 0 ▼a Electronic books.
77608 ▼i Print version: ▼a Ciaburro, Giuseppe ▼t Hands-On Simulation Modeling with Python : Develop Simulation Models to Get Accurate Results and Enhance Decision-Making Processes ▼d Birmingham : Packt Publishing, Limited,c2020
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2527744
938 ▼a Askews and Holts Library Services ▼b ASKH ▼n AH37406763
938 ▼a ProQuest Ebook Central ▼b EBLB ▼n EBL6267443
938 ▼a YBP Library Services ▼b YANK ▼n 301388220
938 ▼a EBSCOhost ▼b EBSC ▼n 2527744
990 ▼a 관리자
994 ▼a 92 ▼b N$T