MARC보기
LDR03159cmm u2200529Ii 4500
001000000317863
003OCoLC
00520230525183550
006m d |
007cr |||||||||||
008190402s2018 maua ob 001 0 eng
019 ▼a 1175918416
020 ▼a 9780262352703 ▼q (electronic bk.)
020 ▼a 0262352702 ▼q (electronic bk.)
020 ▼z 9780262039246 ▼q (hardcover ▼q alkaline paper)
020 ▼z 0262039249 ▼q (hardcover ▼q alkaline paper)
035 ▼a 2517937 ▼b (N$T)
035 ▼a (OCoLC)1091191532 ▼z (OCoLC)1175918416
040 ▼a INA ▼b eng ▼e rda ▼e pn ▼c INA ▼d YDX ▼d UKAHL ▼d OCLCQ ▼d N$T ▼d EBLCP ▼d 248032
049 ▼a MAIN
050 4 ▼a Q325.6 ▼b .R45 2018
08204 ▼a 006.3/1 ▼2 23
1001 ▼a Sutton, Richard S.
24510 ▼a Reinforcement learning : ▼b an introduction / ▼c Richard S. Sutton and Andrew G. Barto.
250 ▼a Second edition.
260 ▼a Cambridge, Massachusetts : ▼b The MIT Press, ▼c [2018]
300 ▼a 1 online resource (xxii, 526 pages)
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
4901 ▼a Adaptive computation and machine learning
504 ▼a Includes bibliographical references and index.
50500 ▼g 1. ▼t Introduction -- ▼g I. ▼t Tabular Solution Methods: ▼g 2. ▼t Multi-armed Bandits -- ▼g 3. ▼t Finite Markov Decision processes -- ▼g 4. ▼t Dynamic programming -- ▼g 5. ▼t Monte Carlo methods -- ▼g 6. ▼t Temporal-difference learning -- ▼g 7. ▼t n-step Bootstrapping -- ▼g 8. ▼t Planning and learning with tabular methods-- ▼g I. ▼t Approximate Solution Methods: ▼g 9. ▼t On-policy Prediction with Approximation-- ▼g 10. ▼t On-policy Control with Approximation-- ▼g 11. ▼t O??policy Methods with Approximation -- ▼g 12. ▼t Eligibility Traces-- ▼g 13. ▼t Policy Gradient Methods-- ▼g III. ▼t Looking Deeper: ▼g 14. ▼t Psychology -- ▼g 15. ▼t Neuroscience -- ▼g 16. ▼t Applications and Case Studies -- ▼g 17. ▼t Frontiers
520 ▼a "Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms."-- ▼c Provided by publisher.
590 ▼a OCLC control number change
650 0 ▼a Reinforcement learning.
650 7 ▼a Reinforcement learning. ▼2 fast ▼0 (OCoLC)fst01732553
655 4 ▼a Electronic books.
7001 ▼a Barto, Andrew G.
77608 ▼i Print version: ▼a Sutton, Richard S. ▼t Reinforcement learning. ▼b Second edition. ▼d Cambridge, Massachusetts : The MIT Press, [2018] ▼z 0262039249 ▼z 9780262039246 ▼w (DLC) 2018023826 ▼w (OCoLC)1043175824
830 0 ▼a Adaptive computation and machine learning.
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2517937
938 ▼a Askews and Holts Library Services ▼b ASKH ▼n AH37519960
938 ▼a YBP Library Services ▼b YANK ▼n 301368137
938 ▼a ProQuest Ebook Central ▼b EBLB ▼n EBL6260249
938 ▼a EBSCOhost ▼b EBSC ▼n 2517937
990 ▼a 관리자
994 ▼a 92 ▼b N$T