MARC보기
LDR05609cmm u22005651i 4500
001000000317826
003OCoLC
00520230525183458
006m d
007cr |||||||||||
008200317s2020 enk o 000 0 eng d
015 ▼a GBC050060 ▼2 bnb
0167 ▼a 019760734 ▼2 Uk
019 ▼a 1159164477 ▼a 1162127635
020 ▼a 178980986X
020 ▼a 9781789809862 ▼q (electronic bk.)
020 ▼z 9781789801217 (pbk.)
035 ▼a 2500098 ▼b (N$T)
035 ▼a (OCoLC)1174971325 ▼z (OCoLC)1159164477 ▼z (OCoLC)1162127635
037 ▼a 9781789809862 ▼b Packt Publishing
040 ▼a UKMGB ▼b eng ▼e rda ▼e pn ▼c UKMGB ▼d OCLCO ▼d UKAHL ▼d EBLCP ▼d N$T ▼d 248032
049 ▼a MAIN
050 4 ▼a QA76.9.A43
08204 ▼a 005.1 ▼2 23
1001 ▼a Ahmad, Imran, ▼e author.
24510 ▼a 40 algorithms every programmer should know : ▼b hone your problem-solving skills by learning different algorithms and their implementation in Python / ▼c Imran Ahmad.
2463 ▼a Forty algorithms every programmer should know
260 ▼a Birmingham : ▼b Packt Publishing, ▼c 2020.
300 ▼a 1 online resource
336 ▼a text ▼2 rdacontent
337 ▼a computer ▼2 rdamedia
338 ▼a online resource ▼2 rdacarrier
500 ▼a Table of ContentsOverview of AlgorithmsData Structures used in AlgorithmsSorting and Searching AlgorithmsDesigning AlgorithmsGraph AlgorithmsUnsupervised Machine Learning AlgorithmsTraditional Supervised Learning AlgorithmsNeural Network AlgorithmsAlgorithms for Natural Language ProcessingRecommendation EnginesData AlgorithmsCryptographyLarge Scale AlgorithmsPractical Considerations.
5050 ▼a Cover -- Title Page -- Copyright and Credits -- Dedication -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Fundamentals and Core Algorithms -- Chapter 1: Overview of Algorithms -- What is an algorithm? -- The phases of an algorithm -- Specifying the logic of an algorithm -- Understanding pseudocode -- A practical example of pseudocode -- Using snippets -- Creating an execution plan -- Introducing Python packages -- Python packages -- The SciPy ecosystem -- Implementing Python via the Jupyter Notebook -- Algorithm design techniques -- The data dimension
5058 ▼a Compute dimension -- A practical example -- Performance analysis -- Space complexity analysis -- Time complexity analysis -- Estimating the performance -- The best case -- The worst case -- The average case -- Selecting an algorithm -- Big O notation -- Constant time (O(1)) complexity -- Linear time (O(n)) complexity -- Quadratic time (O(n2)) complexity -- Logarithmic time (O(logn)) complexity -- Validating an algorithm -- Exact, approximate, and randomized algorithms -- Explainability -- Summary -- Chapter 2: Data Structures Used in Algorithms -- Exploring data structures in Python -- List
5058 ▼a Using lists -- Lambda functions -- The range function -- The time complexity of lists -- Tuples -- The time complexity of tuples -- Dictionary -- The time complexity of a dictionary -- Sets -- Time complexity analysis for sets -- DataFrames -- Terminologies of DataFrames -- Creating a subset of a DataFrame -- Column selection -- Row selection -- Matrix -- Matrix operations -- Exploring abstract data types -- Vector -- Stacks -- The time complexity of stacks -- Practical example -- Queues -- The basic idea behind the use of stacks and queues -- Tree -- Terminology -- Types of trees
5058 ▼a Practical examples -- Summary -- Chapter 3: Sorting and Searching Algorithms -- Introducing Sorting Algorithms -- Swapping Variables in Python -- Bubble Sort -- Understanding the Logic Behind Bubble Sort -- A Performance Analysis of Bubble Sort -- Insertion Sort -- Merge Sort -- Shell Sort -- A Performance Analysis of Shell Sort -- Selection Sort -- The performance of the selection sort algorithm -- Choosing a sorting algorithm -- Introduction to Searching Algorithms -- Linear Search -- The Performance of Linear Search -- Binary Search -- The Performance of Binary Search -- Interpolation Search
5058 ▼a The Performance of Interpolation Search -- Practical Applications -- Summary -- Chapter 4: Designing Algorithms -- Introducing the basic concepts of designing an algorithm -- Concern 1 -- Will the designed algorithm produce the result we expect? -- Concern 2 -- Is this the optimal way to get these results? -- Characterizing the complexity of the problem -- Concern 3 -- How is the algorithm going to perform on larger datasets? -- Understanding algorithmic strategies -- Understanding the divide-and-conquer strategy -- Practical example -- divide-and-conquer applied to Apache Spark
520 ▼a Algorithms have always played an important role both in the science and practice of computing. Beyond traditional computing, ability to utilize these algorithms to solve real-world problems is an important skill and is the focus of this book. In order to optimally use these algorithms, a deeper understanding of their logic and mathematics is ...
588 ▼a Description based on CIP data; resource not viewed.
590 ▼a Master record variable field(s) change: 050
650 0 ▼a Computer algorithms.
650 0 ▼a Python (Computer program language)
655 4 ▼a Electronic books.
77608 ▼i Print version: ▼z 9781789801217
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2500098
938 ▼a Askews and Holts Library Services ▼b ASKH ▼n AH37330077
938 ▼a ProQuest Ebook Central ▼b EBLB ▼n EBL6229061
938 ▼a EBSCOhost ▼b EBSC ▼n 2500098
990 ▼a 관리자
994 ▼a 92 ▼b N$T