MARC보기
LDR03316cmm u2200529Ii 4500
001000000317314
003OCoLC
00520230525182329
006m d
007cr cnu---unuuu
008191004t20192019dcua ob 000 0 eng d
020 ▼a 9780309496124 ▼q (electronic bk.)
020 ▼a 0309496128 ▼q (electronic bk.)
020 ▼z 9780309496094 ▼q (paperback)
020 ▼z 0309496098 ▼q (paperback)
035 ▼a 2264538 ▼b (N$T)
035 ▼a (OCoLC)1121628374
040 ▼a N$T ▼b eng ▼e rda ▼e pn ▼c N$T ▼d N$T ▼d CUS ▼d 248032
049 ▼a MAIN
050 4 ▼a HV6773.15.C97
050 4 ▼a Q325.5
08204 ▼a 006.31 ▼2 23
1001 ▼a Casola, Linda Clare, ▼d 1982-, ▼e rapporteur.
24510 ▼a Robust machine learning algorithms and systems for detection and mitigation of adversarial attacks and anomalies : ▼b proceedings of a workshop / ▼c Linda Casola and Dionna Ali, rapporteurs ; Intelligence Community Studies Board ; Computer Science and Telecommunications Board, Division on Engineering and Physical Sciences, the National Academies of Sciences, Engineering, Medicine.
260 ▼a Washington, DC : ▼b the National Academies Press, ▼c [2019].
300 ▼a 1 online resource (xii, 69 pages) : ▼b color illustrations
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
504 ▼a Includes bibliographical references (pages 53-54).
5050 ▼a Introduction -- Plenary session -- Adversarial attacks -- Detection and mitigation of adversarial attacks and anomalies -- Enablers of machine learning algorithms and systems -- Recent trends i machine learning, parts 1 and 2 -- Plenary session -- Recent trends in machine learning, part 3 -- Machine learning systems --References -- Appendixes
520 ▼a "The Intelligence Community Studies Board (ICSB) of the National Academies of Sciences, Engineering, and Medicine convened a workshop on December 11-12, 2018, in Berkeley, California, to discuss robust machine learning algorithms and systems for the detection and mitigation of adversarial attacks and anomalies. This publication summarizes the presentations and discussions from the workshop"--Publisher's description
588 ▼a Online resource; title from PDF title page (National Academies Press, viewed March 26, 2019).
590 ▼a Master record variable field(s) change: 050, 650
650 0 ▼a Machine learning ▼v Congresses.
650 0 ▼a Computer algorithms ▼v Congresses.
650 0 ▼a Cyberterrorism ▼x Prevention ▼v Congresses.
650 0 ▼a Machine learning.
650 0 ▼a Computer security.
650 0 ▼a Computer networks ▼x Security measures.
7001 ▼a Ali, Dionna, ▼e rapporteur.
7102 ▼a National Academies of Sciences, Engineering, and Medicine (U.S.). ▼b Intelligence Community Studies Board, ▼e issuing body.
7102 ▼a National Academies of Sciences, Engineering, and Medicine (U.S.). ▼b Computer Science and Telecommunications Board, ▼e issuing body.
7112 ▼a Robust Machine Learning Algorithms and Systems for Detection and Mitigation of Adversarial Attacks and Anomalies (Workshop) ▼d (2018 : ▼c Berkeley, Ca.), ▼j author.
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2264538
938 ▼a EBSCOhost ▼b EBSC ▼n 2264538
990 ▼a 관리자
994 ▼a 92 ▼b N$T