MARC보기
LDR05728cmm u2200637Ki 4500
001000000316285
003OCoLC
00520230525180127
006m d
007cr cnu---unuuu
008190615s2019 enk o 001 0 eng d
015 ▼a GBB9B4127 ▼2 bnb
0167 ▼a 019446072 ▼2 Uk
019 ▼a 1104698732 ▼a 1108689990
020 ▼a 9781788292306 ▼q electronic book
020 ▼a 1788292308 ▼q electronic book
020 ▼z 9781788298117 ▼q paperback
035 ▼a 2158182 ▼b (N$T)
035 ▼a (OCoLC)1104712904 ▼z (OCoLC)1104698732 ▼z (OCoLC)1108689990
037 ▼a 1FB931C7-50F0-4997-A451-237F00B38033 ▼b OverDrive, Inc. ▼n http://www.overdrive.com
040 ▼a EBLCP ▼b eng ▼e rda ▼e pn ▼c EBLCP ▼d TEFOD ▼d UKMGB ▼d OCLCF ▼d OCLCQ ▼d YDX ▼d OCLCQ ▼d UKAHL ▼d OCLCQ ▼d N$T ▼d OCLCQ ▼d YDXIT ▼d 248032
049 ▼a MAIN
050 4 ▼a QA76.73.J85 ▼b S36 2019
08204 ▼a 005.13/3 ▼2 23
08204 ▼a 005.73 ▼2 23
1001 ▼a Sengupta, Avik, ▼e author.
24510 ▼a Julia high performance : ▼b optimizations, distributed computing, multithreading, and GPU programming with Julia 1.0 and beyond / ▼c Avik Sengupta.
250 ▼a Second edition.
260 ▼a Birmingham : ▼b Packt Publishing Ltd., ▼c 2019.
300 ▼a 1 online resource
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
500 ▼a Port sharing for high-performance web serving
500 ▼a Includes index.
5050 ▼a Cover; Title Page; Copyright and Credits; Dedication; About Packt; Foreword; Contributors; Table of Contents; Preface; Chapter 1: Julia is Fast; Julia -- fast and dynamic; Designed for speed; JIT and LLVM; Types, type inference, and code specialization; How fast can Julia be?; Summary; Chapter 2: Analyzing Performance; Timing Julia functions; The @time macro; Other time macros; The Julia profiler; Using the profiler; ProfileView; Using Juno for profiling; Using TimerOutputs; Analyzing memory allocation; Using the memory allocation tracker; Statistically accurate benchmarking
5058 ▼a Using BenchmarkTools.jlSummary; Chapter 3: Types, Type Inference, and Stability; The Julia type system; Using types; Multiple dispatch; Abstract types; Julia's type hierarchy; Composite and immutable types; Type parameters; Type inference; Type-stability; Definitions; Fixing type instability; The performance pitfalls; Identifying type stability; Loop variables; Kernel methods and function barriers; Types in storage locations; Arrays; Composite types; Parametric composite types; Summary; Chapter 4: Making Fast Function Calls; Using globals; The trouble with globals
5058 ▼a Fixing performance issues with globalsInlining; Default inlining; Controlling inlining; Disabling inlining; Constant propagation; Using macros for performance; The Julia compilation process; Using macros; Evaluating a polynomial; Horner's method; The Horner macro; Generated functions; Using generated functions; Using generated functions for performance; Using keyword arguments; Summary; Chapter 5: Fast Numbers; Numbers in Julia, their layout, and storage; Integers; Integer overflow; BigInt; The floating point; Floating point accuracy; Unsigned integers; Trading performance for accuracy
5058 ▼a The @fastmath macroThe K-B-N summation; Subnormal numbers; Subnormal numbers to zero; Summary; Chapter 6: Using Arrays; Array internals in Julia; Array representation and storage; Column-wise storage; Adjoints; Array initialization; Bounds checking; Removing the cost of bounds checking; Configuring bound checks at startup; Allocations and in-place operations; Preallocating function output; sizehint!; Mutating functions; Broadcasting; Array views; SIMD parallelization (AVX2, AVX512); SIMD.jl; Specialized array types; Static arrays; Structs of arrays; Yeppp!
5058 ▼a Writing generic library functions with arraysSummary; Chapter 7: Accelerating Code with the GPU; Technical requirements; Getting started with GPUs; CUDA and Julia; CuArrays; Monte Carlo simulation on the GPU; Writing your own kernels; Measuring GPU performance; Performance tips; Scalar iteration; Combining kernels; Processing more data; Deep learning on the GPU; ArrayFire; Summary; Chapter 8: Concurrent Programming with Tasks; Tasks; Using tasks; The task life cycle; task_local_storage; Communicating between tasks; Task iteration; High-performance I/O
520 ▼a Julia is a high-level, high-performance dynamic programming language for numerical computing. This book will help you understand the performance characteristics of your Julia programs and achieve near-C levels of performance in Julia.
588 ▼a Description based on online resource; title from digital title page (viewed on August 03, 2020).
590 ▼a Master record variable field(s) change: 050, 082
650 0 ▼a Julia (Computer program language)
650 0 ▼a Application software ▼x Development.
650 7 ▼a Application software ▼x Development. ▼2 fast ▼0 (OCoLC)fst00811707
650 7 ▼a Julia (Computer program language) ▼2 fast ▼0 (OCoLC)fst01938397
655 4 ▼a Electronic books.
7001 ▼a Edelman, Alan.
77608 ▼i Print version: ▼a Sengupta, Avik. ▼t Julia High Performance : Optimizations, Distributed Computing, Multithreading, and GPU Programming with Julia 1. 0 and Beyond, 2nd Edition. ▼d Birmingham : Packt Publishing, Limited, 짤2019 ▼z 9781788298117
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2158182
938 ▼a Askews and Holts Library Services ▼b ASKH ▼n BDZ0040173887
938 ▼a ProQuest Ebook Central ▼b EBLB ▼n EBL5788735
938 ▼a EBSCOhost ▼b EBSC ▼n 2158182
938 ▼a YBP Library Services ▼b YANK ▼n 300607329
990 ▼a 관리자
994 ▼a 92 ▼b N$T