MARC보기
LDR05427cmm u2200577Mi 4500
001000000315700
003OCoLC
00520230525171305
006m d
007cr |n|---|||||
008190518s2019 enk o 000 0 eng d
015 ▼a GBB986173 ▼2 bnb
0167 ▼a 019396752 ▼2 Uk
019 ▼a 1099567606
020 ▼a 1789806402
020 ▼a 9781789806403 ▼q (electronic bk.)
035 ▼a 2111782 ▼b (N$T)
035 ▼a (OCoLC)1100030829 ▼z (OCoLC)1099567606
037 ▼a 9781789806403 ▼b Packt Publishing
040 ▼a EBLCP ▼b eng ▼e pn ▼c EBLCP ▼d UKAHL ▼d UKMGB ▼d OCLCO ▼d OCLCF ▼d OCLCQ ▼d CHVBK ▼d YDX ▼d OCLCQ ▼d N$T ▼d 248032
049 ▼a MAIN
050 4 ▼a QA76.73.P98 ▼b .G744 2019
08204 ▼a 006.312 ▼2 23
1001 ▼a Greeneltch, Nathan.
24510 ▼a Python Data Mining Quick Start Guide : ▼b a Beginner's Guide to Extracting Valuable Insights from Your Data. ▼h [electronic resource]
260 ▼a Birmingham : ▼b Packt Publishing, Limited, ▼c 2019.
300 ▼a 1 online resource (181 pages)
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
500 ▼a Prediction nomenclature
5050 ▼a Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Data Mining and Getting Started with Python Tools; Descriptive, predictive, and prescriptive analytics; What will and will not be covered in this book; Recommended readings for further explanation; Setting up Python environments for data mining; Installing the Anaconda distribution and Conda package manager; Installing on Linux; Installing on Windows; Installing on macOS; Launching the Spyder IDE; Launching a Jupyter Notebook; Installing high-performance Python distribution
5058 ▼a Recommended libraries and how to installRecommended libraries; Summary; Chapter 2: Basic Terminology and Our End-to-End Example; Basic data terminology; Sample spaces; Variable types; Data types; Basic summary statistics; An end-to-end example of data mining in Python; Loading data into memory -- viewing and managing with ease using pandas; Plotting and exploring data -- harnessing the power of Seaborn; Transforming data -- PCA and LDA with scikit-learn; Quantifying separations -- k-means clustering and the silhouette score; Making decisions or predictions; Summary
5058 ▼a Chapter 3: Collecting, Exploring, and Visualizing DataTypes of data sources and loading into pandas; Databases; Basic Structured Query Language (SQL) queries; Disks; Web sources; From URLs; From Scikit-learn and Seaborn-included sets; Access, search, and sanity checks with pandas; Basic plotting in Seaborn; Popular types of plots for visualizing data; Scatter plots; Histograms; Jointplots; Violin plots; Pairplots; Summary; Chapter 4: Cleaning and Readying Data for Analysis; The scikit-learn transformer API; Cleaning input data; Missing values; Finding and removing missing values
5058 ▼a Imputing to replace the missing valuesFeature scaling; Normalization; Standardization; Handling categorical data; Ordinal encoding; One-hot encoding; Label encoding; High-dimensional data; Dimension reduction; Feature selection; Feature filtering; The variance threshold; The correlation coefficient; Wrapper methods; Sequential feature selection; Transformation; PCA; LDA; Summary; Chapter 5: Grouping and Clustering Data; Introducing clustering concepts; Location of the group; Euclidean space (centroids); Non-Euclidean space (medioids); Similarity; Euclidean space; The Euclidean distance
5058 ▼a The Manhattan distanceMaximum distance; Non-Euclidean space; The cosine distance; The Jaccard distance; Termination condition; With known number of groupings; Without known number of groupings; Quality score and silhouette score; Clustering methods; Means separation; K-means; Finding k; K-means++; Mini batch K-means; Hierarchical clustering; Reuse the dendrogram to find number of clusters; Plot dendrogram; Density clustering; Spectral clustering; Summary; Chapter 6: Prediction with Regression and Classification; Scikit-learn Estimator API; Introducing prediction concepts
520 ▼a This book is an introduction to data mining and its practical demonstration of working with real-world data sets. With this book, you will be able to extract useful insights using common Python libraries. You will also learn key stages like data loading, cleaning, analysis, visualization to build an efficient data mining pipeline.
5880 ▼a Print version record.
590 ▼a Added to collection customer.56279.3
650 0 ▼a Data mining.
650 0 ▼a Python (Computer program language)
650 7 ▼a Data mining. ▼2 fast ▼0 (OCoLC)fst00887946
650 7 ▼a Python (Computer program language) ▼2 fast ▼0 (OCoLC)fst01084736
655 4 ▼a Electronic books.
77608 ▼i Print version: ▼a Greeneltch, Nathan. ▼t Python Data Mining Quick Start Guide : A Beginner's Guide to Extracting Valuable Insights from Your Data. ▼d Birmingham : Packt Publishing, Limited, 짤2019 ▼z 9781789800265
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2111782
938 ▼a Askews and Holts Library Services ▼b ASKH ▼n BDZ0040020888
938 ▼a ProQuest Ebook Central ▼b EBLB ▼n EBL5761233
938 ▼a YBP Library Services ▼b YANK ▼n 300485162
938 ▼a EBSCOhost ▼b EBSC ▼n 2111782
990 ▼a 관리자
994 ▼a 92 ▼b N$T