MARC보기
LDR04801cmm u2200661Ii 4500
001000000312947
003OCoLC
00520230525153414
006m d
007cr |||||||||||
008170304t20172017dcua ob 000 0 eng d
019 ▼a 974016400 ▼a 974315220 ▼a 974471561 ▼a 974561977 ▼a 974694402 ▼a 974749578 ▼a 974967859 ▼a 975045109
020 ▼a 9780309454452 ▼q (electronic bk.)
020 ▼a 030945445X ▼q (electronic bk.)
020 ▼z 9780309454445
020 ▼z 0309454441
035 ▼a 1487603 ▼b (N$T)
035 ▼a (OCoLC)974583846 ▼z (OCoLC)974016400 ▼z (OCoLC)974315220 ▼z (OCoLC)974471561 ▼z (OCoLC)974561977 ▼z (OCoLC)974694402 ▼z (OCoLC)974749578 ▼z (OCoLC)974967859 ▼z (OCoLC)975045109
040 ▼a EBLCP ▼b eng ▼e rda ▼e pn ▼c EBLCP ▼d YDX ▼d CUS ▼d MERUC ▼d OCLCF ▼d N$T ▼d 248032
043 ▼a n-us---
049 ▼a MAIN
050 4 ▼a QA76.9.B45
072 7 ▼a MAT ▼x 039000 ▼2 bisacsh
072 7 ▼a MAT ▼x 023000 ▼2 bisacsh
072 7 ▼a MAT ▼x 026000 ▼2 bisacsh
08204 ▼a 510
1001 ▼a Wender, Ben A., ▼e rapporteur.
24510 ▼a Refining the concept of scientific inference when working with big data : ▼b proceedings of a workshop / ▼c Ben A. Wender, rapporteur ; Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and their Applications, Division on Engineering and Physical Sciences, the National Academies of Sciences, Engineering, Medicine.
260 ▼a Washington, DC : ▼b the National Academies Press, ▼c [2017].
300 ▼a 1 online resource (xii, 102 p.) : ▼b color illustrations
336 ▼a text ▼b txt ▼2 rdacontent
336 ▼a still image ▼b sti ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
504 ▼a Includes bibliographical references (pages 69-73).
5050 ▼a Introduction -- Framing the workshop -- Inference about discoveries basedon integration of diverse data sets -- Inference about causal discoveries driven by large observational data -- Inference when regularization is used to simplify fitting of high-dimensional models -- Panel discussion -- References -- Appendixes.
5201 ▼a "The concept of utilizing big data to enable scientific discovery has generated tremendous excitement and investment from both private and public sectors over the past decade, and expectations continue to grow. Using big data analytics to identify complex patterns hidden inside volumes of data that have never been combined could accelerate the rate of scientific discovery and lead to the development of beneficial technologies and products. However, producing actionable scientific knowledge from such large, complex data sets requires statistical models that produce reliable inferences (NRC, 2013). Without careful consideration of the suitability of both available data and the statistical models applied, analysis of big data may result in misleading correlations and false discoveries, which can potentially undermine confidence in scientific research if the results are not reproducible. In June 2016 the National Academies of Sciences, Engineering, and Medicine convened a workshop to examine critical challenges and opportunities in performing scientific inference reliably when working with big data. Participants explored new methodologic developments that hold significant promise and potential research program areas for the future. This publication summarizes the presentations and discussions from the workshop"--Publisher's description.
5880 ▼a Online resource; title from PDF title page (National Academies Press, viewed Mar. 21, 2017).
650 0 ▼a Big data ▼v Congresses.
650 0 ▼a Mathematical statistics ▼v Congresses.
650 0 ▼a Science ▼x Methodology ▼v Congresses.
650 0 ▼a Experimental design ▼v Congresses.
650 7 ▼a Big data. ▼2 fast ▼0 (OCoLC)fst01892965
650 7 ▼a Experimental design. ▼2 fast ▼0 (OCoLC)fst00918404
650 7 ▼a Mathematical statistics. ▼2 fast ▼0 (OCoLC)fst01012127
650 7 ▼a Science ▼x Methodology. ▼2 fast ▼0 (OCoLC)fst01108313
650 7 ▼a MATHEMATICS / Essays ▼2 bisacsh
650 7 ▼a MATHEMATICS / Pre-Calculus ▼2 bisacsh
650 7 ▼a MATHEMATICS / Reference ▼2 bisacsh
655 7 ▼a Conference papers and proceedings. ▼2 fast ▼0 (OCoLC)fst01423772
655 4 ▼a Electronic books.
7102 ▼a National Academies of Sciences, Engineering, and Medicine (U.S.). ▼b Committee on Applied and Theoretical Statistics, ▼e issuing body.
7112 ▼a Refining the Concept of Scientific Inference When Working with Big Data (Workshop) ▼d (2016 : ▼c Washington, D.C.)
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1487603
938 ▼a EBL - Ebook Library ▼b EBLB ▼n EBL4812417
938 ▼a YBP Library Services ▼b YANK ▼n 13519598
938 ▼a EBSCOhost ▼b EBSC ▼n 1487603
990 ▼a 관리자
994 ▼a 92 ▼b N$T