MARC보기
LDR03054cmm u22005293 4500
001000000312859
003OCoLC
00520230525153209
006m d
007cr |||||||||||
008160323s2016 nju o 000 0 eng d
020 ▼a 1400881927 ▼q (electronic bk.)
020 ▼a 9781400881925 ▼q (electronic bk.)
0247 ▼a 10.1515/9781400881925 ▼2 doi
035 ▼a 1432898 ▼b (N$T)
035 ▼a (OCoLC)945482836
037 ▼a 22573/ctt1bgtzs1 ▼b JSTOR
040 ▼a YDXCP ▼b eng ▼e pn ▼c YDXCP ▼d JSTOR ▼d OCLCF ▼d COO ▼d DEBBG ▼d OCLCQ ▼d N$T ▼d 248032
049 ▼a MAIN
050 4 ▼a QA612.2
072 7 ▼a MAT000000 ▼2 bisacsh
08204 ▼a 514.224 ▼2 19
1001 ▼a David Eisenbud.
24510 ▼a Three-dimensional link theory and invariants of plane curve singularities. (am-110) ▼h [electronic resource].
260 ▼a Princeton : ▼b Princeton Univ Press, ▼c 2016.
300 ▼a 1 online resource.
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
4900 ▼a Annals of Mathematics Studies ; ▼v 110
50500 ▼t Frontmatter -- ▼t Contents -- ▼t Abstract -- ▼t Three-Dimensional Link Theory and Invariants of Plane Curve Singularities -- ▼t Introduction -- ▼t Review -- ▼t Preview -- ▼t Chapter I: Foundations -- ▼t Appendix to Chapter I: Algebraic Links -- ▼t Chapter II: Classification -- ▼t Chapter III: Invariants -- ▼t Chapter IV: Examples -- ▼t Chapter V: Relation to Plumbing -- ▼t References -- ▼t Backmatter.
520 ▼a This book gives a new foundation for the theory of links in 3-space modeled on the modern developmentby Jaco, Shalen, Johannson, Thurston et al. of the theory of 3-manifolds. The basic construction is a method of obtaining any link by "splicing" links of the simplest kinds, namely those whose exteriors are Seifert fibered or hyperbolic. This approach to link theory is particularly attractive since most invariants of links are additive under splicing. Specially distinguished from this viewpoint is the class of links, none of whose splice components is hyperbolic. It includes all links constructed by cabling and connected sums, in particular all links of singularities of complex plane curves. One of the main contributions of this monograph is the calculation of invariants of these classes of links, such as the Alexander polynomials, monodromy, and Seifert forms.
546 ▼a In English.
650 0 ▼a Link theory.
650 0 ▼a Invariants.
650 0 ▼a Curves, Plane.
650 0 ▼a Singularities (Mathematics)
650 7 ▼a MATHEMATICS ▼x General. ▼2 bisacsh
650 7 ▼a Curves, Plane. ▼2 fast ▼0 (OCoLC)fst00885462
650 7 ▼a Invariants. ▼2 fast ▼0 (OCoLC)fst00977982
650 7 ▼a Link theory. ▼2 fast ▼0 (OCoLC)fst00999255
650 7 ▼a Singularities (Mathematics) ▼2 fast ▼0 (OCoLC)fst01119502
655 4 ▼a Electronic books.
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1432898
938 ▼a YBP Library Services ▼b YANK ▼n 12887020
938 ▼a EBSCOhost ▼b EBSC ▼n 1432898
990 ▼a 관리자
994 ▼a 92 ▼b N$T