MARC보기
LDR04037cmm u2200769Ii 4500
001000000309267
003OCoLC
00520230525133708
006m o d
007cr cnu|||unuuu
008141117s2015 flua ob 001 0 eng d
019 ▼a 896794977 ▼a 901198375
020 ▼a 9781439828700 ▼q (electronic bk.)
020 ▼a 1439828709 ▼q (electronic bk.)
020 ▼a 1322667411 ▼q (ebk)
020 ▼a 9781322667416 ▼q (ebk)
020 ▼a 1439828695
020 ▼a 9781439828694
020 ▼z 9781439828694
0291 ▼a CHBIS ▼b 010876965
0291 ▼a CHVBK ▼b 480374708
0291 ▼a DEBBG ▼b BV043610338
0291 ▼a DEBSZ ▼b 422918253
035 ▼a (OCoLC)895660961 ▼z (OCoLC)896794977 ▼z (OCoLC)901198375
037 ▼a 698023 ▼b MIL
040 ▼a N$T ▼b eng ▼e rda ▼e pn ▼c N$T ▼d N$T ▼d UIU ▼d E7B ▼d CRCPR ▼d YDXCP ▼d OCLCF ▼d WAU ▼d EBLCP ▼d DEBSZ ▼d IDEBK ▼d COO ▼d VLB ▼d OCLCQ ▼d OTZ ▼d MERUC ▼d OCLCQ ▼d UAB ▼d MERER ▼d OCLCQ ▼d 248032
049 ▼a MAIN
050 4 ▼a TA342 ▼b .R57 2015eb
072 7 ▼a SCI ▼x 064000 ▼2 bisacsh
072 7 ▼a TEC ▼x 029000 ▼2 bisacsh
08204 ▼a 003/.74 ▼2 23
1001 ▼a Rish, Irina, ▼d 1969-, ▼e author.
24510 ▼a Sparse modeling : ▼b theory, algorithms, and applications / ▼c Irina Rish, Genady Ya. Grabarnik.
264 1 ▼a Boca Raton, FL : ▼b CRC Press, ▼c [2015]
264 4 ▼c 짤2015
300 ▼a 1 online resource (xviii, 231 pages) : ▼b illustrations (some color).
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
4901 ▼a Chapman & Hall/CRC machine learning & pattern recognition series
504 ▼a Includes bibliographical references.
5050 ▼a 1. Introduction -- 2. Sparse recovery : problem formulations -- 3. Theoretical results (deterministic part) -- 4. Theoretical results (probabilistic part) -- 5. Algorithms for sparse recovery problems -- 6. Beyond LASSO : structured sparsity -- 7. Beyond LASSO : other loss functions -- 8. Sparse graphical models -- 9. Sparse matrix factorization : dictionary learning and beyond.
520 ▼a Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing. Sparse Modeling: Theory, Algorithms, and Applications provides an introduction to the growing field of sparse modeling, including application examples, problem formulations that yield sparse solutions, algorithms for finding such solutions, and recent theoretical results on sparse recovery.
5880 ▼a Online resource; title from PDF title page (EBSCO; viewed on December 5, 2014).
590 ▼a eBooks on EBSCOhost ▼b All EBSCO eBooks
650 0 ▼a Mathematical models.
650 0 ▼a Sampling (Statistics)
650 0 ▼a Data reduction.
650 0 ▼a Sparse matrices.
650 7 ▼a SCIENCE ▼x System Theory. ▼2 bisacsh
650 7 ▼a TECHNOLOGY & ENGINEERING ▼x Operations Research. ▼2 bisacsh
650 7 ▼a Data reduction. ▼2 fast ▼0 (OCoLC)fst00887976
650 7 ▼a Mathematical models. ▼2 fast ▼0 (OCoLC)fst01012085
650 7 ▼a Sampling (Statistics) ▼2 fast ▼0 (OCoLC)fst01104676
650 7 ▼a Sparse matrices. ▼2 fast ▼0 (OCoLC)fst01128743
655 4 ▼a Electronic books.
7001 ▼a Grabarnik, Genady Ya, ▼e author.
77608 ▼i Print version: ▼a Rish, Irina, 1969- ▼t Sparse modeling. ▼d Boca Raton, FL : CRC Press : Taylor & Francis Group, 2015 ▼z 9781439828694 ▼w (OCoLC)902837893
830 0 ▼a Chapman & Hall/CRC machine learning & pattern recognition series.
85640 ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=906006
938 ▼a CRC Press ▼b CRCP ▼n CRC0KE11306PDF
938 ▼a EBL - Ebook Library ▼b EBLB ▼n EBL1715233
938 ▼a ebrary ▼b EBRY ▼n ebr10986950
938 ▼a EBSCOhost ▼b EBSC ▼n 906006
938 ▼a ProQuest MyiLibrary Digital eBook Collection ▼b IDEB ▼n cis30550759
938 ▼a YBP Library Services ▼b YANK ▼n 10690128
938 ▼a YBP Library Services ▼b YANK ▼n 10703817
990 ▼a 관리자