MARC보기
LDR04009cmm u2200733Mi 4500
001000000306957
003OCoLC
00520230525111654
006m o d
007cr |n|||||||||
008140719s2014 nju o 000 0 eng d
020 ▼a 9781400862887 ▼q (electronic bk.)
020 ▼a 1400862884 ▼q (electronic bk.)
0247 ▼a 10.1515/9781400862887 ▼2 doi
0291 ▼a CHBIS ▼b 010480811
0291 ▼a CHVBK ▼b 336939825
0291 ▼a DEBSZ ▼b 412065649
0291 ▼a DEBSZ ▼b 445558059
0291 ▼a DEBSZ ▼b 472834142
0291 ▼a DEBBG ▼b BV043778184
035 ▼a (OCoLC)884012968
037 ▼a 22573/ctt73668h ▼b JSTOR
040 ▼a EBLCP ▼b eng ▼e pn ▼c EBLCP ▼d OCLCO ▼d IDEBK ▼d DEBSZ ▼d OCLCQ ▼d JSTOR ▼d YDXCP ▼d OCLCF ▼d N$T ▼d OCLCQ ▼d OCLCO ▼d COO ▼d OCLCQ ▼d 248032
049 ▼a MAIN
050 4 ▼a QA377 .T682 2014
072 7 ▼a MAT012030 ▼2 bisacsh
072 7 ▼a MAT ▼x 005000 ▼2 bisacsh
072 7 ▼a MAT ▼x 034000 ▼2 bisacsh
08204 ▼a 515.353 ▼a 515/.353
1001 ▼a Treves, Franc偈ois.
24510 ▼a Hypo-Analytic Structures : ▼b Local Theory (PMS-40).
260 ▼a Princeton : ▼b Princeton University Press, ▼c 2014.
300 ▼a 1 online resource (516 pages).
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
4901 ▼a Princeton Mathematical Series ; ▼v v. 40
500 ▼a Cover; Contents.
50500 ▼t Frontmatter -- ▼t Contents -- ▼t Preface -- ▼t I. Formally and Locally Integrable Structures. Basic Definitions -- ▼t II. Local Approximation and Representation in Locally Integrable Structures -- ▼t III. Hypo-Analytic Structures. Hypocomplex Manifolds -- ▼t IV. Integrable Formal Structures. Normal Forms -- ▼t V. Involutive Structures With Boundary -- ▼t VI. Local Integraboity and Local Solvability in Elliptic Structures -- ▼t VII. Examples of Nonintegrability and of Nonsolvability -- ▼t VIII. Necessary Conditions for the Vanishing of the Cohomology. Local Solvability of a Single Vector Field -- ▼t IX. FBI Transform in a Hypo-Analytic Manifold -- ▼t X. Involutive Systems of Nonlinear First-Order Differential Equations -- ▼t References -- ▼t Index.
520 ▼a In Hypo-Analytic Structures Franois Treves provides a systematic approach to the study of the differential structures on manifolds defined by systems of complex vector fields. Serving as his main examples are the elliptic complexes, among which the De Rham and Dolbeault are the best known, and the tangential Cauchy-Riemann operators. Basic geometric entities attached to those structures are isolated, such as maximally real submanifolds and orbits of the system. Treves discusses the existence, uniqueness, and approximation of local solutions to homogeneous and inhomogeneous equations.
546 ▼a In English.
5880 ▼a Print version record.
590 ▼a eBooks on EBSCOhost ▼b All EBSCO eBooks
650 0 ▼a Differential equations, Partial.
650 0 ▼a Manifolds (Mathematics)
650 0 ▼a Vector fields.
650 4 ▼a Differential equations, Partial.
650 4 ▼a Manifolds (Mathematics)
650 4 ▼a Vector fields.
650 7 ▼a MATHEMATICS ▼x Geometry ▼x Differential. ▼2 bisacsh
650 7 ▼a MATHEMATICS ▼x Calculus. ▼2 bisacsh
650 7 ▼a MATHEMATICS ▼x Mathematical Analysis. ▼2 bisacsh
650 7 ▼a Differential equations, Partial. ▼2 fast ▼0 (OCoLC)fst00893484
650 7 ▼a Manifolds (Mathematics) ▼2 fast ▼0 (OCoLC)fst01007726
650 7 ▼a Vector fields. ▼2 fast ▼0 (OCoLC)fst01164665
655 4 ▼a Electronic books.
77608 ▼i Print version: ▼a Treves, Franc偈ois. ▼t Hypo-Analytic Structures : Local Theory (PMS-40). ▼d Princeton : Princeton University Press, 짤2014
830 0 ▼a Princeton mathematical series.
85640 ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=790981
938 ▼a EBL - Ebook Library ▼b EBLB ▼n EBL1700288
938 ▼a EBSCOhost ▼b EBSC ▼n 790981
938 ▼a Ingram Digital eBook Collection ▼b IDEB ▼n cis28703942
938 ▼a YBP Library Services ▼b YANK ▼n 11976651
990 ▼a 관리자
994 ▼a 92 ▼b KRKUC