MARC보기
LDR06080cmm uu200793Ia 4500
001000000301832
003OCoLC
00520230519143931
006m o d
007cr |n|
008120123s2012 nju o 000 0 eng d
010 ▼a 2011044712
019 ▼a 784363677 ▼a 817691705
020 ▼a 9781400841714 (electronic bk.)
020 ▼a 1400841712 (electronic bk.)
020 ▼z 0691151199
020 ▼z 9780691151199
0248 ▼a 9786613439758
0291 ▼a DEBSZ ▼b 372825311
0291 ▼a AU@ ▼b 000050347760
0291 ▼a DEBSZ ▼b 378280937
0291 ▼a DEBSZ ▼b 379326272
0291 ▼a DEBSZ ▼b 381394417
035 ▼a (OCoLC)773567194
037 ▼a 343975 ▼b MIL
037 ▼a 22573/cttmcst ▼b JSTOR
040 ▼a EBLCP ▼c EBLCP ▼d E7B ▼d YDXCP ▼d CDX ▼d DEBSZ ▼d UMI ▼d OCLCQ ▼d N$T ▼d COO ▼d OVV ▼d JSTOR ▼d 248032
049 ▼a K4RA
050 4 ▼a QA343 .As987 2012
072 7 ▼a MAT ▼x 040000 ▼2 bisacsh
072 7 ▼a MAT002010 ▼2 bisacsh
072 7 ▼a MAT005000 ▼2 bisacsh
072 7 ▼a MAT022000 ▼2 bisacsh
072 7 ▼a MAT015000 ▼2 bisacsh
072 7 ▼a MAT012010 ▼2 bisacsh
08204 ▼a 515.983
1001 ▼a Ash, Avner, ▼d 1949-
24510 ▼a Elliptic Tales ▼h [electronic resource] : ▼b Curves, Counting, and Number Theory.
260 ▼a Princeton : ▼b Princeton University Press, ▼c 2012.
300 ▼a 1 online resource (276 p.)
500 ▼a Description based upon print version of record.
500 ▼a Epilogue
504 ▼a Includes bibliographical references and index.
5050 ▼a Cover; Title; Copyright; Contents; Preface; Acknowledgments; Prologue; PART I: DEGREE; Chapter 1 Degree of a Curve; 1. Greek Mathematics; 2. Degree; 3. Parametric Equations; 4. Our Two Definitions of Degree Clash; Chapter 2 Algebraic Closures; 1. Square Roots of Minus One; 2. Complex Arithmetic; 3. Rings and Fields; 4. Complex Numbers and Solving Equations; 5. Congruences; 6. Arithmetic Modulo a Prime; 7. Algebraic Closure; Chapter 3 The Projective Plane; 1. Points at Infinity; 2. Projective Coordinates on a Line; 3. Projective Coordinates on a Plane
5058 ▼a 4. Algebraic Curves and Points at Infinity5. Homogenization of Projective Curves; 6. Coordinate Patches; Chapter 4 Multiplicities and Degree; 1. Curves as Varieties; 2. Multiplicities; 3. Intersection Multiplicities; 4. Calculus for Dummies; Chapter 5 Be?zout's Theorem; 1. A Sketch of the Proof; 2. An Illuminating Example; PART II: ELLIPTIC CURVES AND ALGEBRA; Chapter 6 Transition to Elliptic Curves; Chapter 7 Abelian Groups; 1. How Big Is Infinity?; 2. What Is an Abelian Group?; 3. Generations; 4. Torsion; 5. Pulling Rank; Appendix: An Interesting Example of Rank and Torsion
5058 ▼a Chapter 8 Nonsingular Cubic Equations1. The Group Law; 2. Transformations; 3. The Discriminant; 4. Algebraic Details of the Group Law; 5. Numerical Examples; 6. Topology; 7. Other Important Facts about Elliptic Curves; 8. Two Numerical Examples; Chapter 9 Singular Cubics; 1. The Singular Point and the Group Law; 2. The Coordinates of the Singular Point; 3. Additive Reduction; 4. Split Multiplicative Reduction; 5. Nonsplit Multiplicative Reduction; 6. Counting Points; 7. Conclusion; Appendix A: Changing the Coordinates of the Singular Point; Appendix B: Additive Reduction in Detail
5058 ▼a Appendix C: Split Multiplicative Reduction in DetailAppendix D: Nonsplit Multiplicative Reduction in Detail; Chapter 10 Elliptic Curves over Q; 1. The Basic Structure of the Group; 2. Torsion Points; 3. Points of Infinite Order; 4. Examples; PART III: ELLIPTIC CURVES AND ANALYSIS; Chapter 11 Building Functions; 1. Generating Functions; 2. Dirichlet Series; 3. The Riemann Zeta-Function; 4. Functional Equations; 5. Euler Products; 6. Build Your Own Zeta-Function; Chapter 12 Analytic Continuation; 1. A Difference that Makes a Difference; 2. Taylor Made; 3. Analytic Functions
5058 ▼a 4. Analytic Continuation5. Zeroes, Poles, and the Leading Coefficient; Chapter 13 L-functions; 1. A Fertile Idea; 2. The Hasse-Weil Zeta-Function; 3. The L-Function of a Curve; 4. The L-Function of an Elliptic Curve; 5. Other L-Functions; Chapter 14 Surprising Properties of L-functions; 1. Compare and Contrast; 2. Analytic Continuation; 3. Functional Equation; Chapter 15 The Conjecture of Birch and Swinnerton-Dyer; 1. How Big Is Big?; 2. Influences of the Rank on the Np's; 3. How Small Is Zero?; 4. The BSD Conjecture; 5. Computational Evidence for BSD; 6. The Congruent Number Problem
520 ▼a Elliptic Tales describes the latest developments in number theory by looking at one of the most exciting unsolved problems in contemporary mathematics--the Birch and Swinnerton-Dyer Conjecture. The Clay Mathematics Institute is offering a prize of 1 million to anyone who can discover a general solution to the problem. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem.The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from so.
650 4 ▼a Counting.
650 0 ▼a Elliptic functions.
650 0 ▼a Curves, Elliptic.
650 0 ▼a Number theory.
650 7 ▼a MATHEMATICS / Complex Analysis. ▼2 bisacsh
650 7 ▼a Elliptic functions. ▼2 local
650 7 ▼a Curves, Elliptic. ▼2 local
650 7 ▼a Number theory. ▼2 local
650 7 ▼a MATHEMATICS / Algebra / Abstract. ▼2 bisacsh
655 4 ▼a Electronic books.
7001 ▼a Gross, Robert.
77608 ▼i Print version: ▼a Ash, Avner ▼t Elliptic Tales : Curves, Counting, and Number Theory ▼d Princeton : Princeton University Press,c2012 ▼z 9780691151199
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=444098
938 ▼a EBL - Ebook Library ▼b EBLB ▼n EBL843813
938 ▼a ebrary ▼b EBRY ▼n ebr10527170
938 ▼a YBP Library Services ▼b YANK ▼n 7364457
938 ▼a Coutts Information Services ▼b COUT ▼n 20808093
938 ▼a EBSCOhost ▼b EBSC ▼n 444098
990 ▼a 관리자
994 ▼a 92 ▼b K4R