MARC보기
LDR04420cmm uu200529Ia 4500
001000000301808
003OCoLC
00520230519143900
006m o d
007cr cnu---unuuu
008120319s2012 nju ob 001 0 eng d
020 ▼a 9781400842728 (electronic bk.)
020 ▼a 1400842727 (electronic bk.)
0291 ▼a DEBSZ ▼b 379326655
035 ▼a (OCoLC)780425982
037 ▼a 22573/cttf56s ▼b JSTOR
040 ▼a EBLCP ▼b eng ▼c EBLCP ▼d OCLCQ ▼d N$T ▼d YDXCP ▼d OCLCQ ▼d DEBSZ ▼d JSTOR ▼d 248032
049 ▼a K4RA
050 4 ▼a QA646
072 7 ▼a MAT ▼x 041000 ▼2 bisacsh
072 7 ▼a MAT012030 ▼2 bisacsh
08204 ▼a 518 ▼2 22
1001 ▼a Alexakis, Spyros, ▼d 1978-
24514 ▼a The decomposition of global conformal invariants ▼h [electronic resource] / ▼c Spyros Alexakis.
260 ▼a Princeton : ▼b Princeton University Press, ▼c 2012.
300 ▼a 1 online resource (460 p.)
4901 ▼a Annals of mathematics studies ; ▼v no. 182
5050 ▼a Cover Page; Title Page; Copyright Page; Table of Contents; Acknowledgments; 1. Introduction; 1.1 Related Questions; 1.2 Outline of this Work; 2. An Iterative Decomposition of Global Conformal Invariants: The First Step; 2.1 Introduction; 2.2 Conventions, Background, and the Super Divergence Formula; 2.3 From the super Divergence Formula for Ig(첩) Back to P(g): The Two Main Claims of this Work; 2.4 Proposition 2.7 in the Easy Case s = s; 2.5 Proposition 2.7 in the Hard Case s <s; 3. The Second Step: The Fefferman-Graham Ambient Metric and the Nature of the Decomposition; 3.1 Introduction.
5058 ▼a 3.2 The Locally Conformally Invariant Piece in P(g): A Proof of Lemmas 3.1, 3.2, and 3.33.3 Proof of Lemma 3.4: The Divergence Piece in P(g); 4. A Result on the Structure of Local Riemannian Invariants: The Fundamental Proposition; 4.1 Introduction; 4.2 The fundamental Proposition 4.13; 4.3 Proof of Proposition 4.13: Set up an Induction and Reduce the Inductive Step to Lemmas 4.16, 4.19, 4.24; 4.4 Proof that Proposition 4.13 Follows from Lemmas 4.16, 4.19, and 4.24 (and Lemmas 4.22 and 4.23); 5. The Inductive Step of the Fundamental Proposition: The Simpler Cases; 5.1 Introduction.
5058 ▼a 5.2 Notation and Preliminary Results5.3 An analysis of Curvtrans[Lg]; 5.4 A study of LC[Lg] and W[Lg] in (5.16): Computations and cancellations; 6. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part I; 6.1 Introduction; 6.2 The First Ingredient in the Grand Conclusion; 6.3 The Second Part of the Grand Conclusion: A study of Image 1,횩 횠u+1 [Lg]=0; 6.4 The Grand Conclusion and the Proof of Lemma 4.24; 7. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part II; 7.1 Introduction: A sketch of the Strategy; 7.2 The proof of Lemma 4.24 in Case B; A. Appendix.
5058 ▼a A.1 Some Technical ToolsA. 2 Some Postponed Short Proofs; A.3 Proof of Lemmas 4.22 and 4.23; Bibliography; Index of Authors and Terms; Index of Symbols.
520 ▼a This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Deser.
588 ▼a Description based on print version record.
650 0 ▼a Conformal invariants.
650 0 ▼a Decomposition (Mathematics)
650 4 ▼a Mathematics.
650 7 ▼a MATHEMATICS / Numerical Analysis. ▼2 bisacsh
650 7 ▼a MATHEMATICS / Geometry / Differential. ▼2 bisacsh
655 4 ▼a Electronic books.
77608 ▼i Print version: ▼a Alexakis, Spyros. ▼t Decomposition of Global Conformal Invariants (AM-182). ▼d Princeton : Princeton University Press, 2012 ▼z 9780691153476
830 0 ▼a Annals of mathematics studies ; ▼v no. 182.
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=439689
938 ▼a EBL - Ebook Library ▼b EBLB ▼n EBL870005
938 ▼a YBP Library Services ▼b YANK ▼n 7446813
938 ▼a EBSCOhost ▼b EBSC ▼n 439689
990 ▼a 관리자
994 ▼a 92 ▼b K4R