가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Proportion and Performance Evaluation of Fly Ash-based Geopolymer and Its Application in Engineered Composites

상세 프로파일

상세정보
자료유형E-Book
개인저자Ling, Yifeng.
단체저자명Iowa State University. Civil, Construction, and Environmental Engineering.
서명/저자사항Proportion and Performance Evaluation of Fly Ash-based Geopolymer and Its Application in Engineered Composites.
발행사항[S.l.] : Iowa State University., 2018
발행사항Ann Arbor : ProQuest Dissertations & Theses, 2018
형태사항151 p.
소장본 주기School code: 0097.
ISBN9780438074873
일반주기 Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
Advisers: Kejin Wang; Say-Kee Ong.
요약It is well known that the use of Portland cement (PC) in concrete construction is causing severe environmental issues primarily due to vast quantity of carbon dioxide released to the atmosphere during the manufacture of PC. On the other hand, disposal of industrial solid wastes such as fly ash and slag in landfills is creating another threat to the environment. The development of a fly ash geopolymer binder, produced from the reaction of fly ash and alkaline solution, may replace Portland cement as a construction material and at the same, reduce the disposal of fly ash in landfills.
요약This dissertation reports the efforts in optimizing mix proportion, predictive modeling on early age properties, shrinkage control and mechanical performance of an engineered composite made with fly ash-based geopolymer. This dissrtation consists of four papers: (1) Optimization of Mix Design Parameters on Thermal, Setting and Stiffening Behaviors of High Calcium Fly Ash Geopolymer; (2) Prediction of Strength, Setting Time and Heat Generation of Fly Ash Geopolymer Using Artificial Neural Network; (3) The Effects of Activator and Shrinkage Reducing Admixture on Shrinkage Behavior of Fly Ash Geopolymer, and (4) The Effect of Slag on Mechanical Properties of Engineered Geopolymer Composite.
요약Due to the lack of knowledge to optimize the mix proportion of fly ash based geopolymer in the published literature, Paper 1 is focused on the effects of design parameters including SiO2/Na2O mole ratio (Module), solute (NaOH and Na2SiO3) mass concentration on the fresh and hardened properties (i.e., setting time, compressive strength and heat of hydration). The knowledge gained from this study is expected to assist in the optimization of the mix proportions for thefly ash geopolymer. Results from Paper 1 have shown that modules less than 1.5, concentrations between 40% and 50%, L/F ratios less than 0.40, and higher curing temperature, such as 50?띮뀬C, were preferred to synthesize a geopolymer system using high calcium fly ash.
요약In Paper 2, an artificial neural network (ANN) approach was applied to analyze the complexity between geopolymer properties and various parameters forgeopolymer mix proportion design. The predictive models for setting time and compressive strength of geopolymer were established for the ease of mix design. Paper 2 concluded that ANN was an effective tool for parametric study of the properties of fly ash geopolymer. The effects of geopolymer mix design parameters on setting time, compressive strength and heat generation were discussed in accordance with the prediction profiler generated by the ANN models. The proposed model can be used as a guidance for high calcium fly ash geopolymer mix design in the future.
요약Shrinkage of cement-based materials is a major cause of cracking. The work discussed in Paper 3 was to characterize the shrinkage behavior (e.g., free drying shrinkage and restrained ring shrinkage) of fly ash-based geopolymer in comparison with that of PC paste. The effects of activator (Module and Concentration) and shrinkage reducing admixture (SR) on the shrinkage behavior of fly ash-based geopolymer have been explored. In addition, the flowability of the geopolymer using a mini slump test and compressive strength test were also carried out. The results indicate that the fly ash geopolymer has comparable flowability properties as compared to that of PC. SR slightly decreased flowability of PC and fly ash geopolymer. It was also found that the drying shrinkage of fly ash geopolymer was of similar magnitude to that of PC, but was not due to mass loss for fly ash geopolymer. The SR significantly reduced the drying shrinkage of fly ash geopolymer up to 52% as well as in PC. The SR decreased the restrained shrinkage up to 16%, delayed the cracking time, reduced the crack width and lowered the cracking potential for both PC and fly ash geopolymer. The fly ash geopolymer mixtures had lower cracking potential than PC. The effects of Module and Concentration on drying shrinkage and restrained ring shrinkage were also concluded.
요약The last paper (Paper 4) investigated the mechanical performance of fly ash-based geopolymer in a fiber reinforced composite, namely an engineered geopolymer composite (EGC). Fly ash was replaced with slag in the geopolymer. The physical and chemical interactions of these two cementitious materials have resulted in a high strength (up to 110 MPa) and workable EGC. The mechanical properties including compressive strength, tensile strength, tensile strain capacity, toughness, elasticity, flexural bending strength, ductility and pullout bond strength were assessed. Experimental results in Paper 4 revealed that all EGCs exhibited strain hardening behavior. Twenty percent slag addition improved the engineering strength most. (Abstract shortened by ProQuest.).
일반주제명Civil engineering.
언어영어
기본자료 저록Dissertation Abstracts International79-10B(E).
Dissertation Abstract International
대출바로가기http://www.riss.kr/pdu/ddodLink.do?id=T15013668

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00026373 DP 624 가야대학교/전자책서버(컴퓨터서버)/ 대출불가(별치) 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.