가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Robust and Scalable Algorithms for Bayesian Nonparametric Machine Learning

상세 프로파일

상세정보
자료유형E-Book
개인저자Roychowdhury, Anirban.
단체저자명The Ohio State University. Computer Science and Engineering.
서명/저자사항Robust and Scalable Algorithms for Bayesian Nonparametric Machine Learning.
발행사항[S.l.] : The Ohio State University., 2017
발행사항Ann Arbor : ProQuest Dissertations & Theses, 2017
형태사항188 p.
소장본 주기School code: 0168.
ISBN9780438091412
일반주기 Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
Adviser: Srinivasan Parthasarathy.
요약Bayesian nonparametric techniques provide a rich set of tools for modeling complex probabilistic machine learning problems. However the richness comes at the cost of significant complexity of learning and inference for large scale datasets, in a
요약First, we develop fast inference algorithms for sequential models with Bayesian nonparametric priors using small-variance asymptotics, an emerging technique for obtaining scalable combinatorial algorithms from rich probabilistic models. We deriv
요약We start the second section with a novel stick-breaking definition of a certain class of Bayesian nonparametric priors called gamma processes (GP), using its characterization as a completely random measure and attendant Poisson process machinery
요약In the third section, we use concepts from statistical physics to develop a robust Monte Carlo sampler that efficiently traverses the parameter space. Built on the Hamiltonian Monte Carlo framework, our sampler uses a modified Nose-Poincare Hami
요약We continue with an L-BFGS optimization algorithm on Riemannian manifolds that uses stochastic variance reduction techniques for fast convergence with constant step sizes, without resorting to standard linesearch methods, and provide a new conve
요약We finish with a novel technique for learning the mass matrices in Monte Carlo samplers obtained from discretized dynamics that preserve some energy function, by using existing dynamics in the sampling step of a Monte Carlo EM framework, and lea
일반주제명Computer science.
언어영어
기본자료 저록Dissertation Abstracts International79-10B(E).
Dissertation Abstract International
대출바로가기http://www.riss.kr/pdu/ddodLink.do?id=T15000214

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00024936 DP 004 가야대학교/전자책서버(컴퓨터서버)/ 대출불가(별치) 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.