자료유형 | E-Book |
---|---|
개인저자 | Santhanam, Venkataraman. |
단체저자명 | University of Maryland, College Park. Computer Science. |
서명/저자사항 | Towards Generalized Frameworks for Object Recognition. |
발행사항 | [S.l.] : University of Maryland, College Park., 2018 |
발행사항 | Ann Arbor : ProQuest Dissertations & Theses, 2018 |
형태사항 | 117 p. |
소장본 주기 | School code: 0117. |
ISBN | 9780438402164 |
일반주기 |
Source: Dissertation Abstracts International, Volume: 80-02(E), Section: B.
Adviser: Larry S. Davis. |
요약 | Over the past few years, deep convolutional neural network (DCNN) based approaches have been immensely successful in tackling a diverse range of object recognition problems. Popular DCNN architectures like deep residual networks (ResNets) are hi |
요약 | We first present a generic DCNN architecture for Im2Im regression that can be trained end-to-end without any further machinery. Our proposed architecture, the Recursively Branched Deconvolutional Network (RBDN), which features a cheap early mult |
요약 | Second, we focus on gradient flow and optimization in ResNets. In particular, we theoretically analyze why pre-activation(v2) ResNets outperform the original ResNets(v1) on CIFAR datasets but not on ImageNet. Our analysis reveals that although v |
요약 | Finally, we present a robust non-parametric probabilistic ensemble method for multi-classification, which outperforms the state-of-the-art ensemble methods on several machine learning and computer vision datasets for object recognition with st |
일반주제명 | Computer science. Artificial intelligence. |
언어 | 영어 |
기본자료 저록 | Dissertation Abstracts International80-02B(E). Dissertation Abstract International |
대출바로가기 | http://www.riss.kr/pdu/ddodLink.do?id=T15000044 |
인쇄
No. | 등록번호 | 청구기호 | 소장처 | 도서상태 | 반납예정일 | 예약 | 서비스 | 매체정보 |
---|---|---|---|---|---|---|---|---|
1 | WE00024779 | DP 004 | 가야대학교/전자책서버(컴퓨터서버)/ | 대출불가(별치) |