자료유형 | E-Book |
---|---|
개인저자 | Gao, Xiang. |
단체저자명 | University of Minnesota. Industrial Engineering. |
서명/저자사항 | Low-order Optimization Algorithms: Iteration Complexity and Applications. |
발행사항 | [S.l.] : University of Minnesota., 2018 |
발행사항 | Ann Arbor : ProQuest Dissertations & Theses, 2018 |
형태사항 | 220 p. |
소장본 주기 | School code: 0130. |
ISBN | 9780438168466 |
일반주기 |
Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
Adviser: Shuzhong Zhang. |
요약 | Efficiency and scalability have become the new norms to evaluate optimization algorithms in the modern era of big data analytics. Despite its superior local convergence property, second or higher-order methods are often disadvantaged when dealin |
요약 | In particular, for the black-box optimization, we consider three different settings: (1) the stochastic programming with the restriction that only one random sample can be drawn at any given decision point |
일반주제명 | Operations research. |
언어 | 영어 |
기본자료 저록 | Dissertation Abstracts International79-12B(E). Dissertation Abstract International |
대출바로가기 | http://www.riss.kr/pdu/ddodLink.do?id=T14998468 |
인쇄
No. | 등록번호 | 청구기호 | 소장처 | 도서상태 | 반납예정일 | 예약 | 서비스 | 매체정보 |
---|---|---|---|---|---|---|---|---|
1 | WE00024042 | DP 658 | 가야대학교/전자책서버(컴퓨터서버)/ | 대출불가(별치) |