가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Stochastic modelling of big data in finance /

상세 프로파일

상세정보
자료유형E-Book
개인저자Swishchuk, Anatoliy, author.
서명/저자사항Stochastic modelling of big data in finance /Anatoliy Swishchuk.
형태사항1 online resource (305 p.).
총서사항Chapman and Hall/CRC financial mathematics series
소장본 주기OCLC control number change
ISBN9781000776805
1000776808


일반주기 3.3. General Semi-Markov Model for the Limit Order Book with Two States
내용주기Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- Foreword -- Preface -- Symbols -- Acknowledgements -- 1. A Brief Introduction: Stochastic Modelling of Big Data in Finance -- 1.1. Introduction -- 1.2. Big Data in Finance: Limit Order Books -- 1.2.1. Description of Limit Order Books Mechanism -- 1.2.2. Big Data in Finance: Lobster Data -- 1.2.3. More Big Data in Finance: Xetra and Frankfurt Markets (Deutsche Boerse Group), on September 23, 2013. and CISCO Data on November 3, 2014
1.3. Stochastic Modelling of Big Data in Finance: Limit Order Books (LOB) -- 1.3.1. Semi-Markov Modelling of LOB -- 1.3.2. General Semi-Markov Modelling of LOB -- 1.3.3. Modelling of LOB with a Compound Hawkes Processes -- 1.3.4. Modelling of LOB with a General Compound Hawkes Processes -- 1.3.5. Modelling of LOB with a Non-linear General Compound Hawkes Processes -- 1.3.6. Modelling of LOB with a Multivariable General Compound Hawkes Processes -- 1.4. Illustration and Justification of Our Method to Study Big Data in Finance
1.4.1. Numerical Results: Lobster Data (Apple, Google and Microsoft Stocks) -- 1.4.2. Numerical Results: Xetra and Frankfurt Markets stocks (Deutsche Boerse Group), on September 23, 2013 -- 1.4.3. Numerical Results: CISCO Data, November 3, 2014 -- 1.5. Methodological Aspects of Using the Models -- 1.6. Conclusion -- Bibliography -- I. Semi-Markovian Modelling of Big Data in Finance -- 2. A Semi-Markovian Modelling of Big Data in Finance -- 2.1. Introduction -- 2.2. A Semi-Markovian Modelling of Limit Order Markets -- 2.2.1. Markov Renewal and Semi-Markov Processes
2.2.2. Semi-Markovian Modelling of Limit Order Books -- 2.3. Main Probabilistic Results -- 2.3.1. Duration until the next price change -- 2.3.2. Probability of Price Increase -- 2.3.3. The stock price seen as a functional of a Markov renewal process -- 2.4. Diffusion Limit of the Price Process -- 2.4.1. Balanced Order Flow case: Pa(1,1) = Pa(-1, -1) and Pb(1, 1) = Pb(-1, -1) -- 2.4.2. Other cases: either Pa(1, 1) < Pa(-1, -1) or Pb(1, 1) < Pb(-1, -1) -- 2.5. Numerical Results -- 2.6. More Big Data -- 2.6.1. More Data -- 2.6.2. Estimated Probabilities -- 2.6.3. Assumption on Distributions f and f
2.6.4. Diffusion Limit (Not-Fixed Spread) -- 2.6.5. The Optimal Liquidation/Acquisition Problems -- 2.6.6. Market Making -- 2.7. Conclusion -- Bibliography -- 3. General Semi-Markovian Modelling of Big Data in Finance -- 3.1. Introduction -- 3.1.1. Motivation for Generalizing the Model -- 3.1.2. Data -- 3.2. Reviewing the Assumptions with Our New Data Sets -- 3.2.1. Liquidity of Our Data -- 3.2.2. Empirical Distributions of Initial Queue Sizes and Calculated Conditional Probabilities -- 3.2.3. Inter-arrival Times of Book Events -- 3.2.4. Asymptotic Analysis
요약"Stochastic Modelling of Big Data in Finance provides a rigorous overview and exploration of stochastic modelling of big data in finance (BDF). The book describes various stochastic models, including multivariate models, to deal with big data in finance. This includes data in high-frequency and algorithmic trading, specifically in limit order books (LOB), and shows how those models can be applied to different datasets to describe the dynamics of LOB, and to figure out which model is the best with respect to a specific data set. The results of the book may be used to also solve acquisition, liquidation and market making problems, and other optimization problems in finance. Features Self-contained book suitable for graduate students and post-doctoral fellows in financial mathematics and data science, as well as for practitioners working in the financial industry who deal with big data All results are presented visually to aid in understanding of concepts"--
일반주제명Finance -- Mathematical models.
Stochastic models.
Big data.
Big data.
Finance -- Mathematical models.
Stochastic models.
언어영어
기타형태 저록Print version:Swishchuk, AnatoliyStochastic Modelling of Big Data in FinanceMilton : CRC Press LLC,c20229781032209265
대출바로가기https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3380353

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00023255 332.01/5195 가야대학교/전자책서버(컴퓨터서버)/ 대출가능 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.