가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

The the Deep Learning with Pytorch Workshop : Build Deep Neural Networks and Artificial Intelligence Applications with Pytorch [electronic resource]

상세 프로파일

상세정보
자료유형E-Book
개인저자Saleh, Hyatt.
서명/저자사항The the Deep Learning with Pytorch Workshop[electronic resource] :Build Deep Neural Networks and Artificial Intelligence Applications with Pytorch.
발행사항Birmingham : Packt Publishing, Limited, 2020.
형태사항1 online resource (329 p.)
소장본 주기Master record variable field(s) change: 050, 082, 650
ISBN1838981845
9781838981846
일반주기 Description based upon print version of record.
Exercise 4.02: Calculating the Output Shape of a Set of Convolutional and Pooling Layers
내용주기Cover -- FM -- Copyright -- Table of Contents -- Preface -- Chapter 1: Introduction to Deep Learning and PyTorch -- Introduction -- Why Deep Learning? -- Applications of Deep Learning -- Introduction to PyTorch -- GPUs in PyTorch -- What Are Tensors? -- Exercise 1.01: Creating Tensors of Different Ranks Using PyTorch -- Advantages of Using PyTorch -- Disadvantages of Using PyTorch -- Key Elements of PyTorch -- The PyTorch autograd Library -- The PyTorch nn Module -- Exercise 1.02: Defining a Single-Layer Architecture -- The PyTorch optim Package -- Exercise 1.03: Training a Neural Network
Activity 1.01: Creating a Single-Layer Neural Network -- Summary -- Chapter 2: Building Blocks of Neural Networks -- Introduction -- Introduction to Neural Networks -- What Are Neural Networks? -- Exercise 2.01: Performing the Calculations of a Perceptron -- Multi-Layer Perceptron -- The Learning Process of a Neural Network -- Forward Propagation -- The Calculation of Loss Functions -- Backward Propagation -- Gradient Descent -- Advantages and Disadvantages -- Advantages -- Disadvantages -- Introduction to Artificial Neural Networks -- Introduction to Convolutional Neural Networks
Introduction to Recurrent Neural Networks -- Data Preparation -- Dealing with Messy Data -- Exercise 2.02: Dealing with Messy Data -- Data Rescaling -- Exercise 2.03: Rescaling Data -- Splitting the Data -- Exercise 2.04: Splitting a Dataset -- Disadvantages of Failing to Prepare Your Data -- Activity 2.01: Performing Data Preparation -- Building a Deep Neural Network -- Exercise 2.05: Building a Deep Neural Network Using PyTorch -- Activity 2.02: Developing a Deep Learning Solution for a Regression Problem -- Summary -- Chapter 3: A Classification Problem Using DNN -- Introduction
Problem Definition -- Deep Learning in Banking -- Exploring the Dataset -- Data Preparation -- Building the Model -- ANNs for Classification Tasks -- A Good Architecture -- PyTorch Custom Modules -- Exercise 3.01: Defining a Model's Architecture Using Custom Modules -- Defining the Loss Function and Training the Model -- Activity 3.01: Building an ANN -- Dealing with an Underfitted or Overfitted Model -- Error Analysis -- Exercise 3.02: Performing Error Analysis -- Activity 3.02: Improving a Model's Performance -- Deploying Your Model -- Saving and Loading Your Model
PyTorch for Production in C++ -- Building an API -- Exercise 3.03: Creating a Web API -- Activity 3.03: Making Use of Your Model -- Summary -- Chapter 4: Convolutional Neural Networks -- Introduction -- Building a CNN -- Why Are CNNs Used for Image Processing? -- The Image as Input -- Applications of CNNs -- Classification -- Localization -- Detection -- Segmentation -- The Building Blocks of CNNs -- Convolutional Layers -- Exercise 4.01: Calculating the Output Shape of a Convolutional Layer -- Pooling Layers
요약With this hands-on, self-paced guide, you'll explore crucial deep learning topics and discover the structure and syntax of PyTorch. Challenging activities and interactive exercises will keep you motivated and encourage you to build intelligent applications effectively.
일반주제명Machine learning.
Python (Computer program language)
언어영어
기타형태 저록Print version:Saleh, HyattThe the Deep Learning with Pytorch Workshop : Build Deep Neural Networks and Artificial Intelligence Applications with PytorchBirmingham : Packt Publishing, Limited,c2020
대출바로가기http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2532423

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00018789 006.31 가야대학교/전자책서버(컴퓨터서버)/ 대출가능 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.