가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Modern Big Data Processing with Hadoop : Expert techniques for architecting end-to-end big data solutions to get valuable insights /

상세 프로파일

상세정보
자료유형E-Book
개인저자Kumar, V. Naresh, author.
Shindgikar, Prashant, author.
서명/저자사항Modern Big Data Processing with Hadoop :Expert techniques for architecting end-to-end big data solutions to get valuable insights /V Naresh Kumar, Prashant Shindgikar.
발행사항Birmingham : Packt Publishing, 2018.
형태사항1 online resource (394 pages)
소장본 주기Added to collection customer.56279.3 - Master record variable field(s) change: 072
ISBN9781787128811
1787128814


EAN9781787122765
일반주기 Table of ContentsHadoop Design Consideration Hadoop Life Cycle ManagementData Modeling in HadoopDesigning Streaming Data PipelinesBuilding Enterprise Search Platform Data Movement TechniquesEnterprise Data Architecture PrinciplesArchitecting Large Scale Data Processing Solutions using Spark Developing Application using Cloud InfrastructureDesigning Data Visualization Solutions Production Hadoop Administration and Cluster Deployment.
내용주기Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Enterprise Data Architecture Principles; Data architecture principles; Volume; Velocity; Variety; Veracity; The importance of metadata; Data governance; Fundamentals of data governance; Data security; Application security; Input data; Big data security; RDBMS security; BI security; Physical security; Data encryption; Secure key management; Data as a Service; Evolution data architecture with Hadoop; Hierarchical database architecture; Network database architecture.
Relational database architectureEmployees; Devices; Department; Department and employee mapping table; Hadoop data architecture; Data layer; Data management layer; Job execution layer; Summary; Chapter 2: Hadoop Life Cycle Management; Data wrangling; Data acquisition; Data structure analysis; Information extraction; Unwanted data removal; Data transformation; Data standardization; Data masking; Substitution; Static ; Dynamic; Encryption; Hashing; Hiding; Erasing; Truncation; Variance; Shuffling; Data security; What is Apache Ranger?; Apache Ranger installation using Ambari; Ambari admin UI.
Add serviceService placement; Service client placement; Database creation on master; Ranger database configuration; Configuration changes; Configuration review; Deployment progress; Application restart; Apache Ranger user guide; Login to UI; Access manager; Service details; Policy definition and auditing for HDFS; Summary; Chapter 3: Hadoop Design Consideration; Understanding data structure principles; Installing Hadoop cluster; Configuring Hadoop on NameNode; Format NameNode; Start all services; Exploring HDFS architecture; Defining NameNode; Secondary NameNode; NameNode safe mode; DataNode.
Data replicationRack awareness; HDFS WebUI; Introducing YARN; YARN architecture; Resource manager; Node manager; Configuration of YARN; Configuring HDFS high availability; During Hadoop 1.x; During Hadoop 2.x and onwards; HDFS HA cluster using NFS; Important architecture points; Configuration of HA NameNodes with shared storage; HDFS HA cluster using the quorum journal manager; Important architecture points; Configuration of HA NameNodes with QJM; Automatic failover; Important architecture points; Configuring automatic failover; Hadoop cluster composition; Typical Hadoop cluster.
Best practices Hadoop deploymentHadoop file formats; Text/CSV file; JSON; Sequence file; Avro; Parquet; ORC; Which file format is better?; Summary; Chapter 4: Data Movement Techniques; Batch processing versus real-time processing; Batch processing; Real-time processing; Apache Sqoop; Sqoop Import; Import into HDFS; Import a MySQL table into an HBase table; Sqoop export; Flume; Apache Flume architecture; Data flow using Flume; Flume complex data flow architecture; Flume setup; Log aggregation use case; Apache NiFi; Main concepts of Apache NiFi; Apache NiFi architecture; Key features.
요약This book presents unique techniques to conquer different Big Data processing and analytics challenges using Hadoop. Practical examples are provided to boost your understanding of Big Data concepts and their implementation. By the end of the book, you will have all the knowledge and skills you need to become a true Big Data expert.
주제명(통일서명)Apache Hadoop.
Apache Hadoop.fast
일반주제명Electronic data processing -- Distributed processing.
Computers -- Database Management -- Data Mining.
Computers -- Data Modeling & Design.
Database design & theory.
Data mining.
Information architecture.
Computers -- Data Processing.
Data capture & analysis.
Electronic data processing -- Distributed processing.
COMPUTERS / Computer Literacy
COMPUTERS / Computer Science
COMPUTERS / Data Processing
COMPUTERS / Hardware / General
COMPUTERS / Information Technology
COMPUTERS / Machine Theory
COMPUTERS / Reference
언어영어
기타형태 저록Print version:Kumar, V Naresh.Modern Big Data Processing with Hadoop : Expert techniques for architecting end-to-end big data solutions to get valuable insights.Birmingham : Packt Publishing, 짤2018
대출바로가기http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1789468

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00014217 004.36 가야대학교/전자책서버(컴퓨터서버)/ 대출가능 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.