가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Practical big data analytics : hands-on techniques to implement enterprise analytics and machine learning using Hadoop, Spark, NoSQL and R /

상세 프로파일

상세정보
자료유형E-Book
개인저자Dasgupta, Nataraj, author.
서명/저자사항Practical big data analytics :hands-on techniques to implement enterprise analytics and machine learning using Hadoop, Spark, NoSQL and R /Nataraj Dasgupta.
발행사항Birmingham, UK : Packt Publishing, 2018.
형태사항1 online resource (1 volume) : illustrations
소장본 주기Master record variable field(s) change: 072, 082
ISBN9781783554409
1783554401

내용주기Cover; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Too Big or Not Too Big; What is big data?; A brief history of data; Dawn of the information age; Dr. Alan Turing and modern computing; The advent of the stored-program computer; From magnetic devices to SSDs; Why we are talking about big data now if data has always existed; Definition of big data; Building blocks of big data analytics; Types of Big Data; Structured; Unstructured; Semi-structured; Sources of big data; The 4Vs of big data
When do you know you have a big data problem and where do you start your search for the big data solution?Summary; Chapter 2: Big Data Mining for the Masses; What is big data mining?; Big data mining in the enterprise; Building the case for a Big Data strategy; Implementation life cycle; Stakeholders of the solution; Implementing the solution; Technical elements of the big data platform; Selection of the hardware stack; Selection of the software stack; Summary; Chapter 3: The Analytics Toolkit; Components of the Analytics Toolkit; System recommendations; Installing on a laptop or workstation
Installing on the cloudInstalling Hadoop; Installing Oracle VirtualBox; Installing CDH in other environments; Installing Packt Data Science Box; Installing Spark; Installing R; Steps for downloading and installing Microsoft R Open; Installing RStudio; Installing Python; Summary; Chapter 4: Big Data With Hadoop; The fundamentals of Hadoop; The fundamental premise of Hadoop; The core modules of Hadoop; Hadoop Distributed File System -- HDFS; Data storage process in HDFS; Hadoop MapReduce; An intuitive introduction to MapReduce; A technical understanding of MapReduce
Block size and number of mappers and reducersHadoop YARN; Job scheduling in YARN; Other topics in Hadoop; Encryption; User authentication; Hadoop data storage formats; New features expected in Hadoop 3; The Hadoop ecosystem; Hands-on with CDH; WordCount using Hadoop MapReduce; Analyzing oil import prices with Hive; Joining tables in Hive; Summary; Chapter 5: Big Data Mining with NoSQL; Why NoSQL?; The ACID, BASE, and CAP properties; ACID and SQL; The BASE property of NoSQL; The CAP theorem; The need for NoSQL technologies; Google Bigtable; Amazon Dynamo; NoSQL databases; In-memory databases
Columnar databasesDocument-oriented databases; Key-value databases; Graph databases; Other NoSQL types and summary of other types of databasesA? ; Analyzing Nobel Laureates data with MongoDB; JSON format; Installing and using MongoDB; Tracking physician payments with real-world data; Installing kdb+, R, and RStudio; Installing kdb+; Installing R; Installing RStudio; The CMS Open Payments Portal; Downloading the CMS Open Payments data; Creating the Q application; Loading the data; The backend code; Creating the frontend web portal; R ShinyA? platform for developers
Putting it all together -- The CMS Open Payments application
요약Big Data analytics relates to the strategies used by enterprises to process and analyze large amounts of data to bring out hidden insights. With the help of open source and enterprise tools, such as R, Python, Hadoop, and Spark, you will learn how to effectively mine your Big Data. By the end of this book, you will have a clear understanding ...
일반주제명Big data.
Cloud computing.
Machine learning.
Computers -- Data Modeling & Design.
Database design & theory.
Cloud computing.
Information architecture.
Computers -- Data Processing.
Data capture & analysis.
Big data.
Cloud computing.
Machine learning.
COMPUTERS / Computer Literacy.
COMPUTERS / Computer Science.
COMPUTERS / Data Processing.
COMPUTERS / Hardware / General.
COMPUTERS / Information Technology.
COMPUTERS / Machine Theory.
COMPUTERS / Reference.
언어영어
대출바로가기http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1699227

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00014146 004.6782 가야대학교/전자책서버(컴퓨터서버)/ 대출가능 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.