가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Mathematical Models for Ovarian Cancer

상세 프로파일

상세정보
자료유형E-Book
개인저자Botesteanu, Dana-Adriana.
단체저자명University of Maryland, College Park. Applied Mathematics and Scientific Computation.
서명/저자사항Mathematical Models for Ovarian Cancer.
발행사항[S.l.] : University of Maryland, College Park., 2017
발행사항Ann Arbor : ProQuest Dissertations & Theses, 2017
형태사항175 p.
소장본 주기School code: 0117.
ISBN9780355628968
일반주기 Source: Dissertation Abstracts International, Volume: 79-07(E), Section: B.
Adviser: Doron Levy.
이용제한사항This item is not available from ProQuest Dissertations & Theses.
요약Ovarian cancer is the most fatal cancer of the female reproductive system. High-grade serous ovarian cancer (HGSOC) represent the majority of ovarian cancers and accounts for the largest proportion of deaths from the disease. From a clinical pe
요약Studying the growth, progression, and dynamic response to treatment of ovarian cancers in an integrated systems biology/mathematical framework offers an innovative tool at the disposal of the oncological community to further exploit readily avai
요약As a first step, we developed a mathematical model for a quantitative explanation why transvaginal ultrasound-based (TVU) screening fails to improve low-volume detectability and overall survival (OS) of HGSOC. This mathematical model can accurat
요약At the cell population level, we have quantitatively investigated the role of cell heterogeneity emerging from variations in cell-cycle parameters and cell-death. Many commonly used chemotherapeutic agents in treating ovarian cancers target only
요약At the single cell level, we developed a mathematical model to explain the emerging heterogeneity in individual cancer cell responses to drugs targeting the cell-cycle, which have a broad spectrum of anti-tumor activity in ovarian cancers. This
요약The model incorporates an intrinsic form of heterogeneity via the duration of time single cells spend in mitosis. It uses published single cell in vitro experimental data for calibration. Herein, the goal is to better understand why, within a d
요약Studying the natural history, growth, and progression of ovarian cancers in an integrated systems biology/mathematical framework represents a complementary tool that can be used to provide valuable insights into the treatment of HGSOC.
요약My work focuses on developing and applying quantitative, integrated mathematical modeling frameworks to pre-clinical and clinical data, in order to better understand ovarian cancer dynamics and develop new therapeutics.
일반주제명Applied mathematics.
Oncology.
언어영어
기본자료 저록Dissertation Abstracts International79-07B(E).
Dissertation Abstract International
대출바로가기http://www.riss.kr/pdu/ddodLink.do?id=T14996691

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00028888 519 가야대학교/전자책서버(컴퓨터서버)/ 대출가능 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.